首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
非饱和膨胀土抗剪强度的试验研究   总被引:21,自引:1,他引:21  
膨胀土是一种特殊的非饱和土,经典的土力学理论在膨胀土问题中己显得无能为力。因此,用非饱和土力学理论来研究膨胀土问题在理论和实际两方面都具有重大意义。在非饱和土抗剪强度理论中,吸力的量测在工程实际中仍没有一种简单易行的方法。基于这种实际情况,试图通过其他间接的途径来代替吸力的量测,以确定非饱和土的吸附强度。对于膨胀土这种典型的非饱和土,膨胀力是其很重要的性质之一,它的大小受含水量的影响很大;另一方面,膨胀土的抗剪强度也随含水量的变化而不断地变化。进行了大量的膨胀力试验和抗剪强度试验,以确定膨胀土的膨胀力与吸附强度是否有一定的关系。通过对黑山土和梅山土的重塑试样试验得到的试验数据分析发现:膨胀力和含水量之间存在良好指数关系;粘聚力的对数和内摩擦角均随含水量的增大线性减小;非饱和膨胀土的吸附强度与膨胀力之间存在较好的线性关系,并在此基础上优化了非饱和膨胀土抗剪强度公式。  相似文献   

2.
非饱和土的性状及膨胀土边坡稳定问题   总被引:82,自引:8,他引:82       下载免费PDF全文
主要叙述非饱和膨胀土及其边坡稳定研究方面的新进展。首先讨论了非饱和土研究中与土坡稳定性有关的若干重要特性,指出非饱和土的气 水形态问题是非饱和土研究的一个基本问题。并提出随含水率由小变大,非饱和土存在四种气 水形态,不同气 水形态的土具有不尽相同的性状。然后,对非饱和土的吸力和土水特征曲线以及不同气 水形态下的强度作了讨论,并对非饱和土的本构关系作了简要的介绍。接着以南水北调中线膨胀土渠道工程为背景,以吸力问题为中心,对非饱和膨胀土边坡滑动的各种内在的和外界的因素进行了分析,尤其对新近研究的降雨入渗和裂隙影响的研究进行了定量的分析,改变了以往对这方面只进行定性研究的情况。在此基础上对边坡失稳的机理和考虑裂隙及雨水入渗的稳定分析方法进行了研究。  相似文献   

3.
The mechanical behavior of sliding zone soils plays a significant role in landslide. In general, the sliding zone soils are basically in unsaturated state due to rainfall infiltration and reservoir water level fluctuation. Meanwhile, a large number of examples show that the deformation processes of landslides always take a long period of time, indicating that landslides exhibit a time-dependent property. Therefore, the deformation of unsaturated soils of landslide involves creep behaviors. In this paper, the Burgers creep model for unsaturated soils under triaxial stress state is considered based on the unsaturated soil mechanics. Then, by curve fitting using the least squares method, creep parameters in different matric suction states are obtained based on the creep test data of unsaturated soils in the sliding zones of Qianjiangping landslide. Results show that the predicted results are in good agreement with the experimental data. Finally, to further explore the creep characteristics of the unsaturated soils in sliding zones, the relationships between parameters of the model and matric suction are analyzed and a revised Burgers creep model is developed correspondingly. Simulations on another group of test data are performed by using the modified Burgers creep model and reasonable results are observed.  相似文献   

4.
Construction on expansive soils can generally be resolved using piles. Where shallow foundations are used in these materials, the swelling pressure should be determined and the foundations designed to provide a greater pressure to counteract this. Clearly, it will also be necessary to determine the capacity of the ground to take this load. The paper discusses the bearing capacity of unsaturated expansive soils for a given suction value and notes the bearing capacity was increased by 26% when the effect of suction was taken into account. However, an increase in the water content would cause a decrease in suction and hence a decrease in the bearing capacity.  相似文献   

5.
非饱和膨胀土变形和强度特性的三轴试验研究   总被引:8,自引:0,他引:8       下载免费PDF全文
为了研究吸力变化对非饱和膨胀土变形和抗剪强度特性的影响,利用三套新研制的双压力室非饱和土三轴仪,进行一系列吸湿试验、等吸力压缩固结试验和等吸力剪切试验。试验土样取自鄂西北的中膨胀性土,采用静力压实方法制备试样。试验成果表明:该非饱和膨胀土在低围压吸湿过程中的体变性状呈明显的屈服特性,因此验证了Barcelona膨胀土本构模型中SD屈服包线的存在。在等向压缩固结过程中,该非饱和膨胀土的屈服应力随吸力增加而增大,而屈服后的压缩系数随吸力增大而减少,表明吸力对土体具有硬化作用。该非饱和膨胀土的有效内摩擦角不随吸力变化而变化,吸力对抗剪强度的贡献(似凝聚力)随吸力呈非线性增加,吸力对该膨胀土抗剪强度的贡献明显高于压实高岭土和砂性土。  相似文献   

6.
The hydro-mechanical behaviour of compacted expansive Romainville clay was investigated. The soil was air-dried, crushed, and passed through a 2 mm sieve before being statically compacted to a dry density of 1.35 Mg/m3. The mechanical behaviour was investigated by tests in oedometer with controlled suction using the vapor equilibrium technique (suction s = 0, 9, 39, and 110 MPa). The vertical stress was applied in the range of 0–800 kPa. The experimental results are shown as follows: 1) wetting-induced swelling was higher at lower vertical stresses; 2) the vertical stress under which no swelling occurred during water flooding was estimated at 60 kPa, which can be considered as the swelling pressure of the soil tested; 3) the soil compressibility (changes of volume upon stress increases) was strongly influenced by the soil suction: the lower the suction, the higher the compressibility. The hydraulic behaviour was investigated using a large-scale infiltration chamber (800 mm × 1000 mm in section and 1000 mm high). The large size of the soil column allowed burying the volumetric water content sensors (ThetaProbe) without significantly affecting the water transfer and the soil swelling during infiltration. The soil suction was monitored along the soil height (every 100 mm) using various relative humidity sensors and psychrometers. In the infiltration test, water was kept on the soil surface and changes in suction and volumetric water content were monitored for 338 d. The wetting front has reached the bottom of the soil column at the end of the test. The data from the simultaneous monitoring of suction and water content were used to determine the water retention curve and the unsaturated hydraulic conductivity using the instantaneous profile method. It has been observed that the soil water retention curve depends on the soil depth; that is to be related to the soil depth-dependent swelling. The unsaturated hydraulic conductivity was found to be quite low, comprised between 3 × 10−11 m/s (at saturated state) and 10−14 m/s (at about 100 MPa suction).  相似文献   

7.
Lateral swelling pressure (LSP) develops in expansive soil when the volume expansion associated with water infiltration is restrained in the horizontal direction due to a rigid infrastructure. Various types of testing techniques, used to determine the LSP from both laboratory and field studies, are critically reviewed by focusing on two key factors, namely, the boundary conditions and the saturation path. Most testing techniques are capable of reasonably simulating the stress state of a soil element behind a retaining structure by applying a fixed boundary condition in the horizontal direction and a stress boundary condition in the vertical direction. However, they are only used to determine the LSP following a simple path, which is from an initially unsaturated state to a fully saturated state. In other words, these tests fail to provide information on the variation in LSP with respect to changes in the degree of saturation, the water content or the matric suction during the infiltration process. Furthermore, the literature review suggests that a reliable model for the prediction of the LSP during the infiltration process is not available. For this reason, a model is proposed in this paper to estimate the lateral earth pressure (LEP) considering the variation in LSP behind fixed rigid retaining structures with respect to the matric suction during the infiltration process. The proposed model is simple and only requires information, which includes the soil water characteristic curve (SWCC) and a limited number of soil properties. Data from one large-scale model test and two field case studies from published literature are used to illustrate and verify the proposed model. Reasonable comparisons are made between the predictions and the measured data. The proposed model will be a valuable tool for use in conventional engineering practice for the quick prediction of the increasing LEP behind retaining structures with expansive soils as backfill due to the development of LSP associated with water infiltration.  相似文献   

8.
Transient process of water flow changes the equilibrium conditions of an unsaturated soil, resulting in volume change of a soil. The volume change alters the hydraulic properties of the soil and thus influences the transient process of water flow through the soil. Therefore, the interactive processes between stress-strain behavior and pore-water pressure are the primary processes affecting the mechanical behavior of unsaturated soils. This paper presents coupled elasto-plastic constitutive equations for unsaturated compacted kaolin under consolidated drained and shearing-infiltration conditions. The study focused on the development of the suction increase (SI) yield curve that incorporates changes in matric suction during transient processes. In addition, the relationship of change in specific water volume with respect to net mean stress and matric suction was also proposed by incorporating the hysteresis of soil-water characteristic curve. The simulated results by the proposed constitutive model were compared with those obtained from isotropically consolidated drained tests and shearing infiltration tests of compacted kaolin to verify the proposed model. The simulated results are in close agreement with the experimental results.  相似文献   

9.
 吸力与非饱和土的力学性状密切相关,为探讨非饱和膨胀土吸力变化规律,以滤纸法为研究手段,测定6种不同压实度与13种不同重力含水率组合条件下荆门弱膨胀土的总吸力与基质吸力。试验基本覆盖该膨胀土持水状态与密实状态的可能变动范围。研究表明:土体持水状态与密实状态均对压实膨胀土吸力影响显著。相同密实状态下,吸力随持水程度的增大而降低,且变动幅度较大。相同持水状态下,吸力随密实程度的增大而增大。密实度小的试样吸力变化幅度大,密实度大的试样吸力变化相对平缓。在明确吸力变化规律的基础上,构建吸力–饱和度–孔隙比关系的本构方程,数值再现结果与模型预测结果均表明该方程能够有效描述压实膨胀土在可能密实状态与持水状态范围内的吸力变化规律。  相似文献   

10.
膨胀土地基承载力研究   总被引:9,自引:3,他引:6  
根据非饱和膨胀土的分形结构模型,导出了非饱和膨胀土的吸力强度公式,讨论了非饱和膨胀土强度公式的有线性,根据膨胀土的强度特性提出了膨胀土地基承载力公式,运用所提出的承载力公式估算了邯郸和宁夏膨胀土地基承载力值,与实测结果一致,这种膨胀土地基承载力公式可以直接应用于工程实践中。  相似文献   

11.
通过离心机试验研究高液限强膨胀性黑棉土地基中4根模型基桩在浸水条件下桩头位移和桩身轴力的变化规律,考虑的影响因素包括桩长、桩头荷载以及是否采用隔胀措施。通过自主设计制作的离心机内降雨装置和模型土层中的渗流通道实现黑棉土地基浸水条件。试验发现,黑棉土浸水后对桩身轴力的影响分为两阶段:前期土体刚度降低阶段,黑棉土遇水刚度降低后能提供的摩阻力明显降低,使得桩身轴力增大;后期胀拔阶段:黑棉土遇水膨胀隆起,对桩基产生向上的胀拔力,桩身轴力减小。此外,浸水引起的桩头位移变化与桩顶受荷情况密切相关:未受荷桩发生上拔位移,而荷载为625 k N的桩发生沉降位移。在桩周采取隔胀措施可以削弱甚至消除黑棉土变形对桩基的不利影响。  相似文献   

12.
非饱和膨胀土的三轴试验研究   总被引:12,自引:1,他引:12       下载免费PDF全文
用改装可测吸力的三轴仪,研究了宁夏膨胀上的变形性质和强度特性。试验结果表明,含水量(吸力)决定了上样的变形行为,并影响了土样的强度;随着含水量增加,土样的塑性应变量增加,强度减小。文中还研究了随吸力的变化规律及非地和上强度理论中的状态变量的选取方法。  相似文献   

13.
针对目前难以建立反映各类岩土且能适用于各类岩土工程的理想本构模型的现象,笔者在前人研究的基础上,根据广义Hook定律、Fredlund的双变量理论,推导建立非饱和土在侧限状态下的一维本构方程,并根据土体的三相指标的换算关系,获得体积含水率或吸力的变化对土体重度的影响,并依据宁明膨胀土的土水特征曲线,通过分层总和法原理,估算宁明非饱和膨胀土地基遇水浸润所产生的变形以及影响该变形的因素。  相似文献   

14.
The behavior of mechanically stabilized earth (MSE) structures under seasonal climatic variations, i.e. wetting and drying, is not well understood. Stability and serviceability of MSE walls and embankments can significantly depend on the soil-reinforcement (e.g., geosynthetics) interface shearing behavior in unsaturated conditions. This is especially true for reinforced soil slopes and embankments that have significant fines contents. This paper presents results of a laboratory study on the mechanical behavior of unsaturated soil-geotextile interfaces using a specially modified direct shear apparatus. Several suction-controlled laboratory tests were conducted to investigate the effect of soil suction on the soil-geotextile interface. Results of the study indicate that the peak shear strength of the soil-geotextile interface increases nonlinearly with the soil suction. On the other hand, while inconclusive, the effect of suction on the post-peak shear strength of the interface was negligible in some cases. An elastoplastic constitutive model was used to simulate the laboratory results. This study demonstrates that the constitutive model is capable of capturing the mechanical behavior of the unsaturated soil-geotextile interface subjected to constant suction. Both shearing and volume change responses were reasonably simulated by the model.  相似文献   

15.
The failure of steep slopes during rainfall is commonly associated with a decrease in matric suction in the unsaturated soil zone above the water table. The shear strength characteristics of residual soil under water infiltration have been studied in the laboratory using unsaturated triaxial tests. This paper presents a development of a numerical model for simulating a triaxial shearing-infiltration test to investigate the shear strength characteristics of a compacted kaolin under infiltration condition. Both the hydraulic and mechanical responses of the compacted kaolin are modeled using the commercial software SIGMA/W and in-house software YS-Slope. The numerical analyses result and their validation against laboratory test results are presented and discussed in this paper. The results from the numerical analyses show good agreements with those from the laboratory tests, indicating that the proposed numerical model can be used to simulate the triaxial shearing-infiltration tests in laboratory.  相似文献   

16.
Interpretation of electric cone penetration test (CPT) based pore water pressure measurement (CPTu) is well established for soils with behavior that follows classical soil mechanics. The literature on the interpretation of these tests performed on unsaturated tropical soils is limited, and little is known about the influence of soil suction on in situ test data. In this context, the CPT data are presented and discussed to illustrate the seasonal variability in an unsaturated tropical soil site. The test data show that soil suction significantly influenced CPT data up to a depth of 4 m at the study site. It shows the importance of considering seasonal variability in unsaturated soil sites caused by soil suction, which was related to water content through a soil-water retention curve (SWRC). It is also important to consider this aspect in the interpretation of CPT data from these soils.  相似文献   

17.
 利用非饱和土固结仪对原状非饱和黄土进行常含水率固结试验,试验中分别选用3种不同干密度、6种不同含水率试样,分析天然干密度和竖向应力对原状非饱和黄土土水特征的影响。试验表明,原状非饱和黄土的吸力随着试样含水率的增大而降低,干密度对土水特征曲线有不可忽视的影响。同一含水率下,原状非饱和黄土的吸力随着天然干密度的增大而增大;提出吸力临界荷载的概念,干密度相同时,吸力临界荷载随着含水率的增大而降低;含水率相同时,吸力临界荷载随着干密度的增大而增大。含水率一定时,竖向荷载引起的干密度变化与初始干密度变化对吸力的影响是不相同的;竖向应力对土水特征曲线影响较小,可以用无荷载条件下的土水特征曲线来描述其吸力状态。最后,提出原状非饱和黄土土水特征曲线函数经验表达式。  相似文献   

18.
详细介绍了由长江科学院引进的国内第一台GDS非饱和土直剪系统(UBPS)的结构、功能及特点,开展了相应的标定工作,并利用它对河南南阳原状中膨胀土的剪切性状开展了一系列的直剪试验研究工作,得到以下初步研究成果:土样在较低的吸力(<100 kPa)下,基本上表现出剪切硬化的趋势,且强度峰值不明显;当吸力较大时,则表现出剪切软化的趋势,表现出明显的峰值强度;非饱和中膨胀土的黏聚力在低吸力范围内随吸力线性增大,这表明非饱和土双变量强度理论适用于原状中膨胀土。由于原状土的裂隙及铁锰结核分布不均匀,选择干密度相近、无明显裂隙的原状土样进行分组试验对于其抗剪强度指标的确定至关重要。  相似文献   

19.
降雨蒸发条件下膨胀土边坡的变形特征研究   总被引:4,自引:0,他引:4  
在典型膨胀土广泛分布的广西南宁地区建立缓坡、陡坡与坡面种草3种类型膨胀土边坡的原位监测系统,采用6参数小型气象站、测斜管和沉降板,跟踪测试边坡变形随气候变化的演化规律,揭示在降雨蒸发下膨胀土边坡的变形特征。认为降雨是导致膨胀土边坡变形最直接的气候因素,而蒸发效应是边坡变形破坏的重要前提之一;蒸发效应所产生的土体裂隙,使得吸湿条件下原位双环渗透试验获得的膨胀土水力特性具有与传统的非饱和土力学中的定义有相反的趋势,这也是膨胀土边坡在降雨入渗时发生变形乃至破坏的内在机制之一;通过对现场试验数据的拟合,建立了符合膨胀土边坡变形的经验性预测模型,其中边坡变形与土表净入渗量呈二次函数关系。  相似文献   

20.
非饱和土与特殊土测试技术新进展   总被引:22,自引:2,他引:22       下载免费PDF全文
全面系统地总结了非饱和土与特殊土测试技术的新进展,内容包括:吸力与水分测试技术,渗流测试技术,变形、应力、强度、孔压、排水测试技术,膨胀土和湿陷性黄土的测试技术,模型试验与大型现场试验技术。文中指出了非饱和土与特殊土的测试难点,对近年来发展起来的成熟的高新技术和国内外学者研制的几十种新设备作了重点介绍,详细阐述了控制吸力的各种方法和提高测试精度的各种措施,并对今后测试技术的发展提出了若干建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号