首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LPFG和FBG级联结构双参数光纤传感器研究   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种长周期光纤光栅(LPFG)级联布拉格光纤光栅(FBG)的温度/应变双参数光纤传感器。利用飞秒激光直写制作LPFG并级连FBG,且FBG波谷位置为1 551.9 nm,LPFG波谷位置为1 559.1 nm,最高对比度为-12.7 d B。在30~70℃温度变化范围内对传感器温度特性进行测试,并在25℃超净环境下对0~500με应变变化范围内对传感器应变特性进行测试。实验结果表明,升温过程FBG中心波长发生红移,灵敏度15.00 pm/℃,线性度0.981 3;LPFG中心波长发生蓝移,灵敏度-11.75 pm/℃,线性度0.945 3。降温过程FBG中心波长发生蓝移,灵敏度18.25 pm/℃,线性度0.953 8;LPFG中心波长发生红移,灵敏度-15.42 pm/℃,线性度0.980 2。加载过程FBG中心波长发生红移,灵敏度0.93 pm/με,线性度0.991 5;LPFG中心波长发生蓝移,灵敏度-1.51 pm/με,线性度0.986 3。卸载过程FBG中心波长发生蓝移,灵敏度0.92 pm/με,线性度0.990 9;LPFG中心波长发生红移,灵敏度-1.51 pm/με,线性度0.972 8。结果表明,该光纤传感器灵敏度高,线性度好,可以同时动态实现应变和温度的测量。  相似文献   

2.
利用化学腐蚀法对单模光纤(HI-1060)进行端面微加工处理,制作了一种光纤干涉型传感器。将单模光纤一端放置于40%浓度氢氟酸溶液中腐蚀20 min,腐蚀凹槽深度为45μm,制得的传感器条纹对比度为6 d B,波长间隔14 nm。分别设计不同温度及不同折射率的酒精溶液对传感器的温度特性以及折射率特性进行分析研究。实验发现随着温度的增加传感器的谐振波长发生红移,温度灵敏度和线性度为15.3 pm/℃和0.996;随着酒精溶液折射率由1.341 7增加到1.348 3,传感器的谐振波长发生蓝移,折射率灵敏度和线性度为-1 185.7 nm/RIU和0.951。实验结果表明基于化学腐蚀法制作的光纤干涉型传感器对温度以及液体折射率变化均有较高的灵敏度,可用于温度和液体折射率传感测试。  相似文献   

3.
为了提高低折射率化学物质监测的灵敏度,采用光子晶体光纤设计了一种在开环内镀有金薄膜的表面等离子体共振传感器。利用仿真软件COMSOL Multiphysics 5.6系统地研究了开环半径、内部气孔大小、金属膜层厚度对该传感器灵敏度的影响。最终在2800~4700 nm的工作波段内设计出折射率检测范围为1.26~1.31的低折射率传感器。该传感器平均灵敏度高达22 500 nm/RIU,最高灵敏度达33 000 nm/RIU。在七氟醚、卤代醚、含氟有机物等低折射率物质检测方向具有较好的应用前景。  相似文献   

4.
长周期光纤光栅的折射率梯度响应特性   总被引:2,自引:1,他引:2  
通过模式耦合理论,建立了基于长周期光纤光栅(LPFG)的二层圆光波导模型;结合传输矩阵法,仿真得到了外部介质折射率呈线性分布情况下LPFG的透射谱。仿真结果表明:该结构下的LPFG透射谱特性强烈依赖于外部介质折射率梯度,当外部介质折射率梯度升高,透射谱的损耗峰深度逐渐降低,损耗峰3dB带宽逐渐增加,且增加量与折射率梯度的增加量呈较好的线性关系;当外部折射率梯度由1.111 1×10-7 riu/mm增加到1.111 1×10-5 riu/mm时,其梯度灵敏度可达到2.2×107 nm·mm/riu。这一结果使折射率梯度的高灵敏度测量成为可能,为设计和制作基于LPFG的折射率梯度传感器提供了一定的理论依据,并有望用于生化反应中微小尺度下折射率呈梯度分布的液相介质的测量。  相似文献   

5.
本文基于耦合模理论, 建立了严格的四层金属膜理论模型, 探讨了镀金属膜长周期光纤光栅(Long-period fiber grating, LPFG)的温度、 应变及折射率特性, 以及镀膜参数对镀金属膜长周期光纤光栅光谱特性的影响.仿真结果表明, 长周期光纤光栅表面最优的金属膜厚度将引起表现等离子共振(Surface-plasmon resonance, SPR)特性, 这一特性将使得LPFG 对稳定及折射率都有较高的敏感性, 而对应变影响较小. 理论分析表明, 银膜厚度在0.8-1.2 nm 范围内时, 折射率敏感度达到最大值为42.402 6, 敏感度增加4.5%. 仿真结果为镀膜长周期光纤光栅的设计及参数优化提供了理论指导.  相似文献   

6.
利用单模光纤(SMF)中的包层模与纤芯导模之间的干涉,提出了一种基于多模-单模-多模(MSM)结构与布拉格光栅(FBG)级联可同时测量温度和折射率的传感器.基于MSM结构的干涉谱和FBG的透射峰对温度和折射率具有不同响应灵敏度的特点,利用敏感矩阵实现了对温度和折射率的同时测量.实验测得MSM结构和FBG的温度灵敏度分别为0.055 2 nm/℃和0.015 8 nm/℃,MSM结构的折射率灵敏度为109.702 nm/RIU,而FBG对折射率变化不敏感.温度和折射率的测量精度分别为士0.32℃和士0.002 3.实验显示提出的MSM结构的温度灵敏度比单模-多模-单模(SMS)结构传感器提高了5倍,同时由于SMF中的包层模对外界环境的变化较敏感,该MSM结构也可应用于其他传感领域.  相似文献   

7.
为实现敏感元件仅为单一光纤光栅流速传感器的多参数同时测量,提出了一种流速/温度共采的光纤布拉格光栅(FBG)涡轮流速传感器。该传感器通过涡轮实现流体冲击力对光纤光栅中心波长的频率调制,解决光纤光栅温度应变的交叉敏感,理论计算得到其流速检测灵敏度为2.91·10-2 m/(s·Hz-1)。为测试传感器的性能,搭建了传感器测试系统,并选取光纤动态解调仪解调的光纤光栅中心波长动态信号作为试验原始数据。应用快速傅里叶变换(FFT)法分析试验数据,得到传感器流速的检测下限为0.541 7m/s,检测灵敏度为2.57·10-2 m/(s·Hz-1),检测精度为25mm/s,略小于理论计算值,其主要原因在于圆管内流体的流速并非均匀分布的匀速运动,管道内壁对流体具有一定的黏滞力。应用经验模式分解分析原始数据获取其趋势项信号,得到该传感器的温度灵敏度为10.6pm/℃,检测精度为0.5℃。  相似文献   

8.
光纤表面等离子体共振(SPR)传感器通常以纤芯为共振基底,需要采用腐蚀、侧抛、研磨等复杂的加工工艺将光纤包层去除,存在倏逝波不易泄露,传感探针制作困难的问题。本文提出一种以光纤包层为SPR共振基底的阶跃折射率多模光纤包层SPR传感器。采用单模光纤与阶跃折射率多模光纤偏芯熔接结构,将单模光纤纤芯中的光直接注入多模光纤包层,并在阶跃折射率多模光纤包层外镀50nm金膜。在探针传感段,光场能量全部分布在阶跃折射率多模光纤包层中,发生SPR效应充分。与传统光纤包层SPR传感结构相比,该传感器能够获得更深的共振谷,折射率测量范围为1.333~1.385RIU时,传感器的平均灵敏度可达2 307nm/RIU,本文亦对传感段多模光纤纤芯直径与长度不同参数的影响进行了探究。本文提出的阶跃折射率多模光纤包层SPR传感器制作简单,有效解决了光纤包层与空气界面不易获得倏逝波的问题。  相似文献   

9.
为了测量控机床结构件、微加工工作台的微小变形量,设计了一种高精度弓型光纤布拉格光栅(FBG)微位移传感器。将光纤布拉格光栅的栅区部分粘贴在弓型上下壁处,当弓形件发生变形时,可测出上下壁的应变值,从而测得位移值并进行温度解耦。实验结果表明,在量程为1mm时,传感器的灵敏度为2.02pm/μm,线性相关系数为0.998 3,实验的迟滞误差为4.08%,重复性误差为4.08%。在温度补偿实验中可以看出,当温度上升1℃,波长漂移量不到1pm。类似于弓型结构衍生出一种半弓型结构的位移传感器。两类传感器相比,弓型传感器的温度灵敏度比半弓型传感器小0.001 5pm/μm,温度补偿效果更好;但半弓型传感器的线性度为0.4%,线性度比弓型传感器好。两种传感器均满足测量值稳定可靠、精度高、抗电磁干扰能力强,温度不敏感等要求。  相似文献   

10.
本文基于耦合模理论,建立了严格的四层金属膜理论模型,探讨了镀金属膜长周期光纤光栅(Long-period fiber grating,LPFG)的温度、应变及折射率特性,以及镀膜参数对镀金属膜长周期光纤光栅光谱特性的影响。仿真结果表明,长周期光纤光栅表面最优的金属膜厚度将引起表现等离子共振(Surfaceplasmon resonance,SPR)特性,这一特性将使得LPFG对稳定及折射率都有较高的敏感性,而对应变影响较小。理论分析表明,银膜厚度在0.8-1.2nm范围内时,折射率敏感度达到最大值为42.4026,敏感度增加4.5%。仿真结果为镀膜长周期光纤光栅的设计及参数优化提供了理论指导。  相似文献   

11.
为了实现对液压管路中液压油的压力和温度检测,研制了一种EFPI-FBG复合压力温度传感器。对该传感器的压力特性以及温度特性进行研究。首先,介绍了以光纤F-P腔和光纤光栅为敏感元件,利用环氧树脂将EFPI-FBG复合结构经过封装保护构成压力温度传感器结构以及制作方法。接着,建立了压力温度传感模型,对传感器受力进行了理论分析,并使用Matlab和有限元软件分析传感器的压力灵敏度和温度灵敏度。最后对传感器进行压力和温度实验验证。实验结果表明,该传感器的压力灵敏度为2.83μm/MPa,温度灵敏度为1.97μm/℃,温度监测范围为10~80℃,应用于压力测量时的有效工作温度为20~65℃。此EFPI-FBG复合压力温度传感器具有良好的线性度,较小的回程误差,灵敏度高,抗震性能好,可用于液压管路中液压油的压力和温度测量。  相似文献   

12.
蔡露  李尚文  王敏  赵勇 《仪器仪表学报》2022,43(10):118-127
本文设计并制备了一种单模-D型-多模光纤结构,利用光纤传导模式间的干涉以及D型光纤的非对称结构,获得对外界变化响应极其灵敏的光斑图,并基于纹理特征算法解调出光斑的特征值,由特征值与折射率之间的一一对应关系实现折射率传感。对传感特性的研究中,从仿真与实验的角度讨论了不同抛磨长度、抛磨深度对传感特性的影响,仿真与实验结果均表明,抛磨长度2 mm和抛磨深度18μm参数的D型光纤结构折射率传感特性最佳,仿真与实验结果一致,证明了研究方法的正确性以及D型光纤光斑传感器进行折射率传感的可行性。实验中,能量值(EN)折射率测量灵敏度最高可达-1.86/RIU,拟合度达到0.964,相关性值(COR)折射率检测灵敏度最高可达-0.23/RIU,拟合度达到0.979。由于光斑检测的分辨力极高,因此,该方法为高分辨力折射率测量提供了很好的思路。  相似文献   

13.
提出一种双螺线管套管结构的液压油液金属颗粒检测传感器。理论分析表明,套管结构传感器能够耦合外部螺线管线圈磁场强度和利用双螺线管线圈之间的互感,有效增加金属颗粒通过检测区域的电感变化量。选择电感变化量、平均噪声、信噪比作为传感器检测效果评价指标,对比实验的统计结果表明,检测相同粒径的金属颗粒,套管结构传感器不但未增加检测噪声,而且在电感变化量、信噪比方面都要优于单管结构传感器,随着铁颗粒粒径的增加,其检测效果的优越性越明显。检测直径为110~120μm铁颗粒和铜颗粒时,电感变化量分别提升2. 4和1. 7倍,其检测信噪比均提升1. 8倍。颗粒检测下限实验表明,套管结构传感器能够检测直径大于30μm的铁颗粒和直径大于90μm的铜颗粒。研究对提高螺线管型电感检测传感器的检测灵敏度具有参考价值。  相似文献   

14.
提出了一种新颖的基于小位移平面膜片的温度压强同时区分测量的光纤B ragg光栅传感器。该传感器中的光纤B ragg光栅沿径向粘贴于膜片上。光纤光栅中心波长和峰值波长的温度响应灵敏度近似相等,与所加压力无关;压强灵敏度因膜片上所产生的非均匀应变而不同,且与温度无关。通过测量中心波长和峰值波长,实现了单根光栅对温度压强的同时区分测量。从理论和实验上给出了温度、压强响应与峰值波长、中心波长之间的关系式。在30~120℃温度范围和0~6M Pa压强范围内,用此传感器测得的温度值和压强值与用温度计测得的温度值和用压力表测得的压强值之间的偏差分别不大于2℃和0.2M Pa,此偏差大小与仪表最小分度值2℃和0.1M Pa很接近,表明该传感器具有很好的温度、压强响应特性。  相似文献   

15.
利用两个交替放置的周期性V型刻槽板对均匀扭转后的普通单模光纤径向施力制作螺旋型力学微弯长周期光纤光栅(H-MLPFG)。通过实验研究了周期压力和扭转率对该光栅传输谱特性的影响,以及其偏振相关特性。结果表明,施加在光纤的径向压力可以改变H-MLPFG的耦合强度,但不影响其谐振波长变化,LP_(13)耦合模耦合强度在波长1 549.75nm处为30.1dB。当光纤扭转率由0增大到5.38rad/cm,LP_(11)、LP_(12)和LP_(13)模对应的扭转灵敏度分别为1.59、1.82和2.24nm/(rad·cm~(-1))。光纤扭转率为0.90rad/cm时,LP_(13)包层模具有最大偏振相关损耗,在波长1 550.45nm处偏振相关损耗约为6.86dB,对应的谐振波长分离值为1.4nm。该方法制作的LPFG模式耦合强度和谐振波长具有可调谐和可重构性的优点、且结构简单,在光纤通信和传感领域具有潜在的应用价值。  相似文献   

16.
为了在中红外区域获得高灵敏度的低折射率(RI),在光子晶体光纤(PCF)上设计了一种具有双开环通道的新型结构,并在表面等离子体共振(SPR)效应上建立了传感器。通过COMSOL有限元法(FEM)对所设计PCF-SPR传感器进行仿真分析。结果表明,该传感器对低RI感应具有优异的检测能力,在RI为1.23~1.29的范围内,实现最大波长灵敏度达到10 300 nm/RIU,最大理论分辨率为9.71×10-6RIU。  相似文献   

17.
<正>本论文主要研究内容包括:①研究了飞秒激光微加工的特点,在石英玻璃和光敏玻璃上加工出高质量微结构;针对近红外飞秒激光制备长周期光纤光栅(long period fiber grating,LPFG)时存在的焦点与纤芯相对位置难调、信号较弱等缺陷,提出一种改进的加工方法并利用飞秒激光加工了高性能LPFG;针对光纤光栅传感器灵敏度低、易受环境因素交叉敏感等缺陷,采用飞秒激光加工了三种新型高灵敏度光纤马赫-泽德干涉仪(Mach-Zehnder interferometer,MZI)传感器,并将其应用于折射率和温度等传感测试;②虽然飞秒激光制作的光纤传感器具有很好的性能,但成本较高,不利于工业化大批量生产,对此本文提出采用电弧放电的方法制备了三种新型低成本光纤MZI传感器,并用来进行折射率、温度和转角等物理量测试,还进一步提出通过降低光纤包层厚度的方法提高折射率灵敏度;③讨论了基于回廊模的光纤传感器原理,搭建了微球与光纤  相似文献   

18.
用于温度测试的光纤SPR传感器特性研究   总被引:1,自引:0,他引:1  
表面等离子体波共振效应(SPR)对液体折射率变化非常敏感,而温度变化又会导致液体折射率和金膜复介电常数的改变。利用这一原理,可以考察温度变化对SPR共振效果的影响。采用相对光谱检测技术,获得相应的SPR反射光谱,并详细分析了共振波长和共振强度等参数随温度变化的特性曲线。定义耦合系数η,还可实现对不同液体温度下共振效应强度的评估。通过这些研究,进一步扩展了此类传感器的应用领域。  相似文献   

19.
基于盒膜结构的微弯式长周期光纤光栅气压传感器研究   总被引:1,自引:0,他引:1  
利用长周期光纤光栅(LPFG)谐振光谱随弯曲曲率变化的敏感特性,通过设计特制LPFG-膜盒封装结构,研制了一种基于微弯特性的长周期光纤光栅气压传感器.根据ANSYS数值分析和实验结果表明,在0.02~0.25 MPa 气压范围内,长周期光纤光栅的透射率不断增强,透射谱中谐振峰幅值从16.712 dB降至6.495 dB,与所测气压值之间呈现良好对应关系,并且谐振峰波长也红移1.54 m,气压传感器的灵敏度可达到4.086 8×105 dB/hPa.该传感器系统在所测气压范围内显示出较好的灵敏性和重复性,能够满足气象及飞行器高度监测中对气压测量的要求.  相似文献   

20.
基于Mach-Zehnder干涉仪原理,利用光纤错位熔接技术设计并制作了一种单模光纤-多模光纤-单模光纤-错位熔接点-单模光纤结构的液体折射率传感器。传感器中的多模光纤和错位连接部分充当光耦合器;多模光纤在后面的单模光纤的纤芯和包层中激发出纤芯模和包层模,不同的模式有不同的模式折射率,经中间单模光纤传输到错位熔接点处时,不同模式光之间将产生光程差,经错位熔接点耦合成为导出光纤的纤芯模从而产生干涉。对该传感器输出的干涉光谱中干涉谷功率随外界溶液折射率变化的规律进行了理论分析和实验研究。结果表明:溶液折射率变化为1.358 9~1.392 2时,干涉谱中1 530 nm附近的干涉谷光功率与溶液折射率呈单调递增关系,可用于折射率的测量;折射率变化为1.372 0~1.392 2时,传感器响应曲线具有很好的线性度,线性拟合系数为0.998,对应的灵敏度为252.06 dB/RIU。该传感器制作简单、结构紧凑、成本低、灵敏度高,可用于生物医学领域液体折射率的实时测量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号