首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Technical Physics Letters - The possibility of reducing the threshold of the effect of dynamic light scattering in liquid-crystal cells has been demonstrated. The threshold lowering is favored by...  相似文献   

2.
Aim: This study aims to investigate the suitability of thermosensitive triblock polymer poly-(dl-lactic acid-co-glycolic acid) (PLGA)–polyethylene glycol (PEG)–PLGA as a matrix material for ocular delivery of dexamethasone acetate (DXA). Methods: The copolymer was synthesized and evaluated for its thermosensitive and gelation properties. DXA in situ gel-forming solution based on PLGA–PEG–PLGA copolymer of 20% (w/w) was prepared and evaluated for ocular pharmacokinetics in rabbit according to the microdialysis method, which was compared to the normal eye drop. Result: The copolymer with 20% (w/w) had a low critical solution temperature of 32°C, which is close to the surface temperature of the eye. The Cmax of DXA in the anterior chamber for the PLGA–PEG–PLGA solution was 125.2 μg/mL, which is sevenfold higher than that of the eye drop, along with greater area under the concentration–time curves (AUC). Conclusion: These results suggest that the PLGA–PEG–PLGA copolymer is potential thermosensitive in situ gel-forming material for ocular drug delivery, and it may improve the bioavailability, efficacy of some eye drugs.  相似文献   

3.
A simple home-made open photoacoustic cell is used for measuring some of the thermal properties of nanoparticles of $\mathrm{{Co}}_{0.5}\mathrm{{Ni}}_{0.5\text{-- }2{x}}\mathrm{{Li}}_x\text{ Fe }_{2+{x}}\mathrm{{O}}_{4}$ Co 0.5 Ni 0.5 -- 2 x Li x Fe 2 + x O 4 (with $x$ x ranging from 0.00 to 0.25 in steps of 0.05) prepared by the citrate precursor method. The influence of sintering temperatures on the thermal properties of a selected sample for $x=0.25$ x = 0.25 was also investigated. The thermal-diffusivity and thermal-effusivity measurements of the investigated samples are obtained by measuring the photoacoustic signal as a function of the modulated frequency depending on the existence of a reference sample. The thermal diffusivity of the as-prepared samples decreases as the $\mathrm{{Li}}^{1+}$ Li 1 + content increases except for the samples for $x=0.15$ x = 0.15 and $x=0.20$ x = 0.20 . These exceptions may be due to a better magnetic ordering in these samples leading to reduced phonon scattering and a higher thermal diffusivity. Finally, the thermal diffusivity of the sintered samples increases as the sintering temperature increases due to the increase in grain size.  相似文献   

4.
Data are presented on the formation of ultrafine CdSe x Te1 – x (0 x 1) particles in silicate glass. By introducing CdSe, CdTe, or CdSe x Te1 – x particles into glass batches, glasses are obtained which contain semiconductor nanoparticles formed during melt cooling. The absorption spectrum of the glasses thus prepared depends on the composition, concentration, and structure of the semiconductor nanoparticles.  相似文献   

5.
Silver nanoparticles of high chemical homogeneity have been synthesized by a novel laser–liquid–solid interaction technique from a solution composed of silver nitrate, distilled water, ethylene glycol, and diethylene glycol. Rotating nickel, niobium, stainless steel, and ceramic Al2O3 substrates were irradiated using a continuous-wave CO2 laser and Q-switched Nd–YAG laser ( = 1064 and 532 nm). The silver nanoparticles were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe x-ray microanalysis (EPMA). The shape of silver particles was dependent on the chemical composition and laser parameters. The synthesis mechanism of silver nanoparticles has been proposed to occur primarily at the laser–liquid–substrate interface by a nucleation and growth mechanism.  相似文献   

6.
Abstract

In this study, multilayered scaffolds composed of polycaprolactone (PCL)–gelatin/poly(lactic-co-glycolic acid) (PLGA)–gelatin/PLGA–chitosan artificial blood vessels were fabricated using a double-ejection electrospinning system. The mixed fibers from individual materials were observed by scanning electron microscopy. The effects of the cross-linking process on the microstructure, mechanical properties and biocompatibility of the fibers were examined. The tensile stress and liquid strength of the cross-linked artificial blood vessels were 2.3 MPa and 340 mmHg, respectively, and were significantly higher than for the non-cross-linked vessel (2.0 MPa and 120 mmHg). The biocompatibility of the cross-linked artificial blood vessel scaffold was examined using the MTT assay and by evaluating cell attachment and cell proliferation. The cross-linked PCL–gelatin/PLGA–gelatin/PLGA–chitosan artificial blood vessel scaffold displayed excellent flexibility, was able to withstand high pressures and promoted cell growth; thus, this novel material holds great promise for eventual use in artificial blood vessels.  相似文献   

7.
The results of a study of the complex treatment of alumina–silica-containing materials (fly ash, low-duality bauxites, clays, kaolins, nephelines) by chemical enrichment are presented. The de-siliconization of aluminum-containing raw materials with a high silica content is based on the property of hydroaluminum silicates (which are basic silica-containing minerals) to undergo intramolecular phase changes by thermal treatment, resulting in the formation of amorphous alkali-soluble silica. Dissolution of silica is effected by leaching the heat-treated raw material with sodium hydroxide solution, whereby the alumina remains in the solid state in the form of -Al2O3, or -Al2O3. The use of chemical enrichment methods enables reduction of the silica content in the raw material and utilization of the resulting material for alumina production. The effectiveness of the chemical enrichment of alumina–silica-containing material depends in large measure on the possibility of the complete and economic utilization of all valuable components of the raw material. The possible methods of utilizing silica solutions for the production of valuable materials and methods of regenerating alkali from the silica solution are also considered.  相似文献   

8.
Liposomes containing phosphatidylcholine and cholesterol (uncoated) and coated by chitosan, gelatin, and combination of chitosan and gelatin were prepared by the modified ethanol injection method. The aim of this work was to formulate and characterize liposomes of camptothecin (CPT)-11–HCl (Irinotecan HCl) containing chitosan, gelatin, and both polymers as coating materials; and also to increase its circulation longevity when compared with the free drug while maintaining the agent in its active lactone form. Size, shape, zeta potential, encapsulation efficiency, stability study, in vitro, and in vivo release study were used for characterization of liposomes. The size of liposomes was in the order of uncoated?<?chitosan coated?<?gelatin coated?<?combination of chitosan and gelatin coated. The zeta potential of liposomes was in the order of combination of chitosan and gelatin coated?>?chitosan coated?>?gelatin coated?>?uncoated. The formulations showed the long-term stability. The encapsulation efficiency of liposomes was in order of combination of chitosan and gelatin coated?>?gelatin coated?>?chitosan coated?>?uncoated. The in vitro and in vivo release of drug was observed in the order of combination chitosan and gelatin coated?>?gelatin coated?>?chitosan coated?>?uncoated.  相似文献   

9.
Yousef  L. A.  Bakry  A. R.  Ahmad  A. A.  Alshami  A. S. 《Radiochemistry》2020,62(3):368-380
Radiochemistry - Zeolite modified with phosphate (Z/P) was synthesized and tested for Th4+ adsorption. The optimum adsorption conditions are as follows: pH 3.5, contact time of 30 min, 0.1 g of...  相似文献   

10.
Metalworking fluid (MWF) supplies a film of lubricant to abate friction, acts as a cooling media to rebate induced heat, and prevents metal pick-ups by flushing away the chips. Hence a liquid used as a cutting fluid reduces wear on the tool, reduces the energy consumption, and produces a better surface quality on the work piece. This paper describes the formulation of a novel water-soluble MWF and its performance evaluation during straight turning and end milling experiments carried out with AISI 304 stainless steel, mild steel, and cast iron as work piece materials. The MWF was prepared by mixing water with white coconut oil as the base oil and food-grade additives as surfactants. Viscosity, pH value, and biodegradability were measured and compared with a commercially available non-vegetable oil–based MWF. The surface roughness and tool surface temperature were measured throughout the machining experiments, and better performances were observed with the coconut oil–based MWF. Tool tip geometry and flank wear for straight turning machining operation were identified by observing scanning electron microscope (SEM) images.  相似文献   

11.
Context: Taste masking greatly influences the acceptability of bitter tasting formulation; moreover, it governs the commercial and therapeutic success of drug products.

Objective: This work is directed toward masking the bitter taste of ondansetron HCl (ONS) utilizing the excipient, which can delay the reach of drug to the taste buds.

Material and methods: Magnesium aluminum silicate (Veegum F), a clay material having capability to adsorb the drugs onto it, was used. The adsorption systems of ONS with Veegum were obtained by dynamic adsorption technique and examined by scanning electron microscopy, differential scanning calorimetry, Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) for morphology, thermal behavior, and interactions. The taste assessment of prepared systems was done by in vitro method based on drug release.

Results: The molecular interaction between ONS and Veegum in the system was revealed by FTIR spectroscopy. A change in thermal behavior of the system was observed owing to interaction or replacement of the cationic groups of Veegum with that of ONS. XRD studies revealed that the prepared system was having lower crystallinity as compared to ONS. The in vitro drug release study showed that ONS release from the system was relatively slow in basic environment than the acidic one.

Discussion: Adsorption of ONS on the surface of Veegum was mainly due to electrostatic interactions and hydrogen bonding.

Conclusion: The experimental results reveal the successful intercalation of ONS into the space available between the layers of Veegum. Furthermore, this resulted in a control on drug release in salivary pH resulting in a concentration lower than bitterness threshold.  相似文献   


12.
The progressive debilitating nature of rheumatoid arthritis (RA) combined with its unknown etiology and initial similarity to other inflammatory diseases makes early diagnosis a significant challenge. Early recognition and treatment of RA is essential for achieving effective therapeutic outcome. NIR-II photoacoustic (PA) molecular imaging (PMI) is emerging as a promising new strategy for effective diagnosis and treatment guidance of RA, owing to its high sensitivity and specificity at large penetration depth. Herein, an antirheumatic targeted drug tocilizumab (TCZ) is conjugated to polymer nanoparticles (PNPs) to develop the first NIR-II theranostic nanoplatform, named TCZ-PNPs, for PA-imaging-guided therapy of RA. The TCZ-PNPs are demonstrated to have strong NIR-II extinction coefficient, high photostability and excellent biocompatibility. NIR-II PMI results reveal the excellent targeting abilities of TCZ-PNPs for the effective noninvasive diagnosis of RA joint tissue with a high signal-to noise ratio (SNR) of 35.8 dB in 3D PA tomography images. Remarkably, one-month treatment and PA monitoring using TCZ-PNPs shows RA is significantly suppressed. In addition, the therapeutic evaluation of RA mice by NIR-II PMI is shown to be consistent with clinical micro-CT and histological analysis. The TCZ-PNPs-assisted NIR-II PMI provides a new strategy for RA theranostics, therapeutic monitoring and the beyond.  相似文献   

13.
In this work, Fe3O4–ZnO core–shell nanoparticles have been successfully synthesized using a simple two-step co-precipitation method. In this regard, Fe3O4 (magnetite) and ZnO (zincite) nanoparticles (NPs) were synthesized separately. Then, the surface of the Fe3O4 NPs was modified with trisodium citrate in order to improve the attachment of ZnO NPs to the surface of Fe3O4 NPs. Afterwards, the modified magnetite NPs were coated with ZnO NPs. Moreover, the influence of the core to shell molar ratio on the structural and magnetic properties of the core–shell NPs has been investigated. The prepared nanoparticles have been characterized utilizing transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and vibrating sample magnetometer (VSM). The results of XRD indicate that Fe3O4 NPs with inverse spinel phase were formed. The results of VSM imply that the Fe3O4–ZnO core–shell NPs are superparamagnetic. The saturation magnetization of prepared Fe3O4 NPs is 54.24 emu/g and it decreases intensively down to 29.88, 10.51 and 5.75 emu/g, after ZnO coating with various ratios of core to shell as 1:1, 1:10 and 1:20, respectively. This reduction is attributed to core–shell interface effects and shielding. TEM images and XRD results imply that ZnO-coated magnetite NPs are formed. According to the TEM images, the estimated average size for most of core–shell NPs is about 12 nm.  相似文献   

14.
The microstructural evolution and precipitation behaviour of Nb–V–Mo and single V containing transformation induced plasticity assisted steels were investigated during thermomechanical processing. A plane strain compression testing machine was used to simulate the thermomechanical processing. Microstructures were characterised by optical microscopy, scanning-transmission electron microscopy and microanalysis, and X-ray diffraction analysis, and Vickers hardness was obtained from the deformed specimens. The resulting microstructure of both Nb–V–Mo and V steels at room temperature primarily consisted of an acicular/bainitic ferrite, retained austenite and martensite surrounded by allotriomorphic ferrite.The TEM analysis showed that a signi?cant number of Nb(V,Mo)(C,N) precipitates were formed in the microstructure down to the ?nishing stage in Nb–V–Mo steel(i.e. 830 °C). It was also found that the V(C,N)precipitation primarily occurred in both ferrite and deformed austenite below the ?nishing stage. The results suggested that Nb–Mo additions considerably increased the temperature stability of microalloy precipitates and controlled the microstructural evolution of austenite. However, the microalloy precipitation did not cause a signi?cant precipitation strengthening in both Nb–V–Mo and V steels at room temperature.  相似文献   

15.
Journal of Superconductivity and Novel Magnetism - The synthesis of nanoparticles by the continuous flow process is of great interest since it allows extensive control over reaction conditions with...  相似文献   

16.
Pronounced magnetocaloric effects are typically observed in materials that often contain expensive and rare elements and are therefore costly to mass produce. However, they can rather be exploited on a small scale for miniaturized devices such as magnetic micro coolers, thermal sensors, and magnetic micropumps. Herein, a method is developed to generate magnetocaloric microstructures from an equiatomic iron–rhodium (FeRh) bulk target through a stepwise process. First, paramagnetic near-to-equiatomic solid-solution FeRh nanoparticles (NPs) are generated through picosecond (ps)-pulsed laser ablation in ethanol, which are then transformed into a printable ink and patterned using a continuous wave laser. Laser patterning not only leads to sintering of the NP ink but also triggers the phase transformation of the initial γ- to B2-FeRh. At a laser fluence of 246 J cm−2, a partial (52%) phase transformation from γ- to B2-FeRh is obtained, resulting in a magnetization increase of 35 Am2 kg−1 across the antiferromagnetic to ferromagnetic phase transition. This represents a ca. sixfold enhancement compared to previous furnace-annealed FeRh ink. Finally, herein, the ability is demonstrated to create FeRh 2D structures with different geometries using laser sintering of magnetocaloric inks, which offers advantages such as micrometric spatial resolution, in situ annealing, and structure design flexibility.  相似文献   

17.
18.
In this study Mn?CZn ferrite nanoparticles (Mn(1?x)Zn x Fe2O4, x=0, 0.3 and 0.5) were produced by a chemical co-precipitation method. The structure and size of the Mn?CZn ferrite nanoparticles were characterized using X-ray diffraction (XRD) and Transmission electron microscopy (TEM). Results show that the ferrite nanoparticles have the spinel structure. It was found that the size of Mn?CZn ferrite nanoparticles decreases by increasing of the Zn concentration. The magnetic properties of Mn?CZn ferrite nanoparticles were investigated with a vibrational sample magnetometer (VSM) and it was observed that Mn0.7Zn0.3Fe2O3 ferrite nanoparticles have the maximum saturation magnetization and that the initial susceptibility decreases with the increase in Zn concentration.  相似文献   

19.
A series of 63- to 90-μm sieve-fractioned lactose pseudopolymorphs were investigated in terms of carrier functionality for dry powder inhaler (DPI) formulations. Stable α-anhydrous, α-monohydrate, and β-anhydrous were chosen as model pseudopolymorphs. In addition, the β-anhydrous was further purified to remove residual α-monohydrate content (β-treated). The carriers were investigated in terms of morphology, particle size, crystallinity, and surface energy using inverse gas chromatography. Furthermore, the lactose samples carrier performance was evaluated by studying the aerosolization efficiency of the model drug, micronized salbutamol sulfate, from drug–carrier blends using a next generation impactor (NGI). In general, the aerosol performance of drug from carrier followed the rank order α-monohydrate?>?β-anhydrous?>?β-treated?>?α-anhydrous. Significant difference in carrier size was observed, specifically with relation to the amount of fines (where a rank order of β-treated?>?β-anhydrous?>?α-monohydrate?>?α-anhydrous. No direct relationship between fine content and particle morphology was observed. In comparison, an inverse relationship between surface energy and aerosolization efficiency was found, where a plot of fine particle fraction (aerodynamic diameter < 4.46?μm) against total surface energy resulted in R2?=?.977. Such observations are most likely due to increased particle carrier adhesion and reduced drug liberation during the aerosolization process, indicating surface chemistry (in this case due to the existence of different pseudopolymorphs) to play a dominating role in DPI systems.  相似文献   

20.
The objective of this study was to characterize the methylpoly (ethylene glycol)-poly (lacticacid-co-glycolicacid)-poly (ethylene-glycol) (MeO-PEG-PLGA-PEG-OMe, abbreviation as PELGE) copolymers as intravenous injection drug delivery carriers and their degradation behavior in vitro. A series of MeO-PEG-PLGA-PEG-OMe copolymers with various molar ratios of lactic to glycolic acid and various molecular weights and different MeO-PEG contents were synthesized by ring-opening polymerization in the presence of MeO-PEG with molar masses of 2000 and 5000, using stannous octoate as the catalyst. The hydrophilicity of PELGE copolymers, evaluated by contact angle measurements, was found to increase with an increase in their MeO-PEG contents. Methylpoly (ethylene glycol)-poly (lacticacid-co-glycolicacid) (MeO-PEG-PLGA, abbreviation as PELGA) nanoparticles and PELGE nanoparticles were prepared using the emulsion-solvent evaporation technique (o/w) with Pluronic F68 (Poloxamer 188 NF) as emulsifier in the external aqueous phase. The degradation behavior of the nanoparticles was evaluated by the lactate generation with time upon their in vitro incubation in PBS (pH 7.4). The rate of in vitro degradation of the PELGE or PELGA nanoparticles depended on their composition, increasing with an increase in the proportion of MeO-PEG or LA in the copolymer chains. The degradation rate was slower at higher lactide: glycolide ratio. The lower the molecular weight of PELGE; the higher the degradation rate of the nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号