首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dihydroergotamine mesylate (DHE), ergotamine derivative, has been offered for clinical use to stop or treat symptoms of an emerging migraine as injection for more than a half century. It is shown that bioavailability of DHE greatly changes between the subjects and up to 99% of the orally absorbed dose may be cleared by first pass metabolism. The aim of this study was to design and optimize DHE fast-dissolving sublingual films for migraine treatment. For this purpose pullulan and maltodextrin was chosen as film-forming polymers and propylene glycol as plasticizer. For optimization process Box Behnken design was used. The formed films were free from air bubbles, cuttings, or cracks. Disintegration, mechanical strength and dissolution of films were compared. It is found that pullulan and maltodextrin formed films with the most desired properties at the concentration of 1.5% and 2%. The application of optimum formulation to rabbits showed that bioavailability of formulation is about 23.35% with a tmax 20?min. Due to this fast onset of action and higher bioavailability than oral administration, it is suggested that the polymer combinations of pullulan and maltodextrin formed successful films and were considered as an alternative dosage form for DHE in migraine therapy.  相似文献   

2.
Abstract

Objective: Repaglinide is a well-known FDA approved drug from category of meglitinide; used for the treatment of diabetes. However, its use is limited because of its poor water solubility which leads to erratic drug absorption. Present work focuses on formulation and evaluation of polyvinyl alcohol (PVA)-polyvinyl pyrrolidone (PVP) nanofibers to counter this problem of poor water solubility.

Significance: Prepared nanofibers with hydrophilic polymers were expected to tackle the problem of poor water solubility.

Methods: Nanofibers were prepared by electrospinning technique with the optimization of parameters affecting final product. Further prepared formulation was characterized using various techniques.

Results: Successful development of drug loaded nanofibers was commenced utilizing electrospinning technique. Further casted film of same polymeric blend was prepared and compared with nanofibers. Optimized nanofibers showed an average diameter of 600–800?nm with smooth surface morphology. Prepared nanofibers and casted film was analyzed in terms of surface morphology, mechanical strength, solid state of drug present, effects of hydrogen bond formation and drug release profile. Results from the glucose tolerance test suggested both the formulations to be having better control over glucose levels as compared to free drug.

Conclusion: Overall developed nanofibers presented themselves to be potential drug delivery candidates for drugs having poor water solubility.  相似文献   

3.
The purpose of this study is to optimize and characterize of chitosan buccal film for delivery of insulin nanoparticles that were prepared from thiolated dimethyl ethyl chitosan (DMEC-Cys). Insulin nanoparticles composed of chitosan and dimethyl ethyl chitosan (DMEC) were also prepared as control groups. The release of insulin from nanoparticles was studied in vitro in phosphate buffer solution (PBS) pH 7.4. Optimization of chitosan buccal films has been carried out by central composite design (CCD) response surface methodology. Independent variables were different amounts of chitosan and glycerol as mucoadhesive polymer and plasticizer, respectively. Tensile strength and bioadhesion force were considered as dependent variables. Ex vivo study was performed on excised rabbit buccal mucosa. Optimized insulin nanoparticles were obtained with acceptable physicochemical properties. In vitro release profile of insulin nanoparticles revealed that the highest solubility of nanoparticles in aqueous media is related to DMEC-Cys nanoparticles. CCD showed that optimized buccal film containing 4% chitosan and 10% glycerol has 5.81?kg/mm2 tensile strength and 2.47?N bioadhesion forces. Results of ex vivo study demonstrated that permeation of insulin nanoparticles through rabbit buccal mucosa is 17.1, 67.89 and 97.18% for chitosan, DMEC and DMEC-Cys nanoparticles, respectively. Thus, this study suggests that DMEC-Cys can act as a potential enhancer for buccal delivery of insulin.  相似文献   

4.
Solid dispersions of lonidamine in PEG 4000 and PVP K 29/32 were prepared by the spray-drying method. Then, the binary systems were studied and characterized using differential scanning calorimetry, hot stage microscopy, and x-ray diffractometry. In vitro dissolution studies of the solid dispersed powders were performed to verify if any lonidamine dissolution rate or water solubility improvement occurred. In vivo tests were carried out on the solid dispersions and on the cyclodextrin inclusion complexes to verify if this lonidamine water solubility increase was really able to improve the in vivo drug plasma levels. Drug water solubility was increased by the solid dispersion formation, and the extent of increase depended on the polymer content of the powder. The greater increase of solubility corresponded to the highest content of polymer. Both the solid dispersions and the cyclodextrin complexes were able to improve the in vivo bioavailability of the lonidamine when administered per os. Particularly, the AUC of the drug plasma levels was increased from 1.5 to 1.9-fold depending on the type of carrier.  相似文献   

5.
Background: Although ritodrine (RD)-hydrochloride (HCl), named RD-HCl, is widely used in the treatment of premature labor by intravenous prolonged infusion or frequent oral dosing of tablets, those administrations often lower patients’ quality of life (QOL) or cause undesirable side effects, such as tachycardia; therefore, in this study, the potential usefulness of buccal administration as a novel administration method was examined in vivo.

Method: First, the HPLC method was assessed for the determination of plasma RD concentration. Then, after RD-HCl solution in saline was administered intravenously (1?mg/kg), intragastrically (10?mg/kg) or buccally (10?mg/kg) in rats, the plasma concentration–time profiles were investigated, and the absorption extent and rate compared.

Results: The present modified determination method by HPLC with fluorescence detection (Ex. 278?nm, Em. 306?nm) was suitable to analyze the plasma level at 8–200?ng/mL. Buccal administration gave the best plasma concentration–time profile for maintenance of an effective plasma level and fewer side effects. Absorption rates calculated by deconvolution also supported better sustained absorption in buccal dosing.

Conclusion: Buccal application of RD-HCl was demonstrated to be a potentially useful dosing method in the treatment of premature labor with RD-HCl.  相似文献   

6.
Context: Chemoprevention of potential malignant disorders or cancerous lesions that affect oral mucosae requires extended duration of treatment. Locoregional delivery of natural products could represent a promising strategy for this purpose.

Objective: To investigate the aptitude of aloin to permeate through, or accumulate in, the buccal mucosa and to develop a new prolonged oro-mucosal drug delivery system.

Materials and methods: Permeation/accumulation of aloin from Curacao Aloe (containing 50% barbaloin) was evaluated ex vivo, using porcine buccal mucosa as the most useful model to simulate human epithelium. Oro-mucosal matrix tablets were prepared by dispersing aloin (10% w/w) in Eudragit® RS 100 as, biocompatible, low permeable, pH-independent, and non-swelling polymer. The prepared tablets were evaluated for drug–polymer compatibility, weight variation, drug uniformity content, diameter, thickness, hardness, friability, swelling, mucoadhesive strength, and drug release.

Results: Aloin has low tendency to cross buccal mucosa, permeation is marginal, and high drug amounts remain entrapped into the epithelium. Matrix tablets characteristics were in agreement with pharmacopoeial requirements. Drug release showed highly reproducible Higuchian profile. Delivery through matrix tablets promoted drug accumulation in the mucosal tissue.

Discussion and conclusion: Following application of matrix tablets on porcine buccal mucosa, the amount of discharged drug recovered in the tissue should be sufficient to produce the desired effects, providing therapeutic drug levels directly at the site of action. Aloin-loaded tablets are valid candidates for prevention/treatment of potentially malignant disorders and oral cancer and could potentially lead to clinically relevant drug delivery system as coadjuvant of conventional chemotherapy/radiation therapy.  相似文献   


7.
Objective: To develop mucoadhesive tablets for the vaginal delivery of progesterone (P4) to overcome its low oral bioavailability resulting from drug hydrophobicity and extensive hepatic metabolism.

Methods: The tablets were prepared using mixtures of P4/Pluronic® F-127 solid dispersion and different mucoadhesive polymers. The tablets physical properties, swelling index, mucoadhesion and drug release kinetics were evaluated. P4 pharmacokinetic and pharmacodynamic properties were evaluated in female rabbits and compared with vaginal micronized P4 tablets and intramuscular (IM) P4 injection, respectively.

Results: The tablets had satisfactory physical properties and their swelling, in vitro mucoadhesion force and ex vivo mucoadhesion time were dependent on tablet composition. Highest swelling index and mucoadhesion time were detected for tablets containing 20% chitosan-10% alginate mixture. Most tablets exhibited burst release (~25%) during the first 2?h but sustained the drug release for ~48?h. In vivo study showed that chitosan-alginate mucoadhesive tablets had ~2-fold higher P4 mean residence time (MRT) in the blood and 5-fold higher bioavailability compared with oral P4. Further, same tablets showed 2-fold higher myometrium thickness in rabbit uterus compared with IM P4 injection.

Conclusion: These results confirm the potential of these mucoadhesive vaginal tablets to enhance P4 efficacy and avoid the side effects associated with IM injection.  相似文献   

8.
The aim of this study was to develop hyperoside (Hyp) nanocrystals to enhance its dissolution rate, oral bioavailability and anti-HBV activity. Hyp nanocrystals were prepared using high pressure homogenization technique followed by lyophilization. A Box–Behnken design approach was employed for process optimization. The physicochemical properties, pharmacokinetics and anti-HBV activity in vivo of Hyp nanocrystal prepared with the optimized formulation were systematically investigated. Hyp nanocrystals prepared with the optimized formulation was found to be rod shaped with particle size of 384?±?21?nm and PDI of 0.172?±?0.027. XRPD studies suggested slight crystalline change in drug. Dissolution rate obtained from Hyp nanocrystals were markedly higher than pure Hyp. The nanocrystals exhibited enhanced Cmax (7.42?±?0.73 versus 3.80?±?0.66?mg/L) and AUC0???t (193.61?±?16.30 versus 91.92?±?17.95?mg·h/L) with a 210.63% increase in relative bioavailability. Hyp nanocrystals exhibited significantly greater anti-HBV activity than Hyp. These results suggested that the developed nanocrystals formulation had a great potential as a viable approach to enhance the bioavailability of Hyp.  相似文献   

9.
Abstract

Dimenhydrinate (DMH)-loaded buccal bioadhesive films for the prevention and treatment of motion sickness were prepared and optimized. This study examines the rate of drug release from the films for prolonged periods of time to reduce or limit the frequency of DMH administration. Based on preliminary studies using various polymers and concentrations, hydroxyethylcellulose (2.5, 3.0, and 3.2%), and xanthan gum (2.8%) were chosen as matrix polymers. The films were analyzed with respect to their mechanical, physicochemical, bioadhesive, swelling, and in-vitro release properties. In in-vivo pharmacokinetic studies, xanthan gum-based DMH buccal film was associated with significantly increased DMH plasma levels between 1 h and 5 h after DMH dosing when compared with an oral drug solution. The area under the curve AUC0–7 h value of the mucoadhesive buccal film was two-fold higher than the oral DMH solution. Histological analysis revealed that DMH films cause mild morphological and inflammatory changes in rabbit buccal mucosa. The DMH buccal film is effective for approximately 7 h, thus representing an option for single-dose antiemetic therapy. This dosage regimen could be particularly beneficial for chain travelers who travel for long periods of time.  相似文献   

10.
This study was undertaken to improve solubility and bioavailability of nateglinide by preparation of stable self-emulsifying solid dispersions (SESDs). The influence of semicrystalline polymers (poloxamer 407, gelucire 50/13) and method of preparation on dissolution behavior, in vivo performance and stability of nateglinide SESDs were investigated. After optimization, SESDs were prepared at 1:5 weight ratio of nateglinide and polymer individually. All the SESDs were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction and scanning electron microscopy. Aqueous solubility of nateglinide was enhanced by 91.82-fold. The SESDs (poloxamer 407-based solid dispersions) achieved rapid and complete drug release (~100% within 45?min) at pH 2. The improved dissolution appeared to be well correlated with the enhanced bioavailability of nateglinide in rabbits. After oral administration of SESDs (poloxamer 407-based solid dispersions), Cmax and AUC of nateglinide were increased by ~2.92 and 1.77-folds, respectively, signifying the effectiveness of solid dispersions to improve the bioavailability of nateglinide. Stability during storage was established to show prevention of recrystallization. In conclusion, SESDs with poloxamer 407 in solvent method appeared to be an economic and promising technique to improve the dissolution, bioavailability, and stability of nateglinide.  相似文献   

11.
The aim of this study is to assess pullulan as a novel steric stabilizer during the wet-stirred media milling (WSMM) of griseofulvin, a model poorly water-soluble drug, and as a film-former in the preparation of strip films via casting–drying the wet-milled drug suspensions for dissolution and bioavailability enhancement. To this end, pullulan films, with xanthan gum (XG) as thickening agent and glycerin as plasticizer, were loaded with griseofulvin nanoparticles prepared by WSMM using pullulan in combination with sodium dodecyl sulfate (SDS) as an ionic stabilizer. The effects of drug loading and milling time on the particle size and suspension stability were investigated, as well as XG concentration and casting thickness on film properties and dissolution rate. The nanosuspensions prepared with pullulan–SDS combination were relatively stable over 7 days; hence, this combination was used for the film preparation. All pullulan-based strip films exhibited excellent content uniformity (most?<3% RSD) despite containing only 0.3–1.3?mg drug, which was ensured by the use of precursor suspensions with?>5000 cP viscosity. USP IV dissolution tests revealed fast/immediate drug release (t80?相似文献   

12.
Enhancement of the dissolution rate of the poorly water-soluble hypoglycemic agent, gliclazide, by the aid of lyophilization was investigated. Mannitol, sodium lauryl sulfate (SLS) and polyvinyl pyrrolidone (PVP-k-30) were employed in different weight ratios (43%, 56% and 64% w/w, respectively) as water-soluble excipients in the formulation. Lyophilized systems were found to exhibit extremely higher in vitro dissolution rate compared to the unprocessed drug powder. Solid state characterization of the lyophilized systems using X-ray powder diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry techniques revealed that dissolution enhancement was attributable to transformation of gliclazide from the crystalline to an amorphous state in the solid dispersion formed during the lyophilization process. The gastrointestinal absorption and hypoglycemic effect of the lyophilized gliclazide/SLS system were investigated following oral administration to Albino rabbits. Cmax and area under the plasma concentration–time curve of gliclazide (AUC0–12) after administration of the lyophilized formulations were significantly higher than those obtained after administration of the unprocessed gliclazide.  相似文献   

13.
Venlafaxine is a newer antipsychotic drug which shows first pass effect. Cress seed is also called as garden cress or green salad. This study examined the mechanical (gel strength, adhesiveness) and rheological properties of cress seed mucilage based gels that contain different ratios of carbopol 934 P (0.5–1.5%). In addition, diffusion of venlafaxine from gel formulations was evaluated. The selected formulation was further analyzed for pharmacokinetic parameters in rabbits. All formulations exhibited pseudoplastic flow with thixotropy. Formulation F5 showed the Cmax of 24.19 ± 0.72 ng/ml by buccal route of administration and 17.98 ± 1.15 ng/ml by oral route of administration. The bioavailability of F5 by buccal route was 54.44% and that of by oral route was 39.60%. A combination of the cress seed mucilage and carbopol 934 P resulted in a prolonged and higher venlafaxine delivery by buccal route of administration.  相似文献   

14.
The objective of this study was to develop a novel patient compliant buccoadhesive film capable of providing a prolonged protection against allergic symptoms. Polymeric buccoadhesive films of loratidine were prepared using hydroxypropylmethyl cellulose (HPMC)-E5 and K100 blend and Eudragit® NE 30D as retardant. Films were prepared using solvent-casting method. The developed films were evaluated for physical properties, hydration, mucoadhesion time, drug release, etc. All the prepared films exhibited excellent mechanical strength and uniform drug content. Increase in drug content did not influence the physicomechanical properties of the film. The mucoadhesive strength of films was significantly enhanced with increase in HPMC content. Increase in Eudragit® NE 30 D content in the film decreases the hydration, erosion and drug release, but enhances the mucoadhesion time. Furthermore, the release of loratidine from the prepared films followed Hixson–Crowell kinetics. Studies in healthy human volunteers using placebo films indicate that the prepared films possess prolonged mucoadhesion in-vivo, and this could potentially lead to clinically relevant drug delivery system.  相似文献   

15.
Background and objective: Capsaicin is the main pungent principle present in chili peppers has been found to possess P-glycoprotein (P-gp) inhibition activity in vitro, which may have the potential to modulate bioavailability of P-gp substrates. Therefore, purpose of this study was to evaluate the effect of capsaicin on intestinal absorption and bioavailability of fexofenadine, a P-gp substrate in rats.

Methods: The mechanistic evaluation was determined by non-everted sac and intestinal perfusion studies to explore the intestinal absorption of fexofenadine. These results were confirmed by an in vivo pharmacokinetic study of oral administered fexofenadine in rats.

Results: The intestinal transport and apparent permeability (Papp) of fexofenadine were increased significantly by 2.8 and 2.6 fold, respectively, in ileum of capsaicin treated rats when compared to control group. Similarly, absorption rate constant (Ka), fraction absorbed (Fab) and effective permeability (Peff) of fexofenadine were increased significantly by 2.8, 2.9 and 3.4 fold, respectively, in ileum of rats pretreated with capsaicin when compared to control group. In addition, maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC) were increased significantly by 2.3 and 2.4 fold, respectively, in rats pretreated with capsaicin as compared to control group. Furthermore, obtained results in rats pretreated with capsaicin were comparable to verapamil (positive control) treated rats.

Conclusions: Capsaicin pretreatment significantly enhanced the intestinal absorption and bioavailability of fexofenadine in rats likely by inhibition of P-gp mediated cellular efflux, suggesting that the combined use of capsaicin with P-gp substrates may require close monitoring for potential drug interactions.  相似文献   


16.
The aim of this study was to explore the feasibility of complexing the poorly water-soluble drug atorvastatin calcium (AC) with β-cyclodextrin (β-CD) based nanosponges (NS), which offer advantages of improving dissolution rate and eventually oral bioavailability. Blank NS were fabricated at first by reacting β-CD with the cross-linker carbonyldiimidazole at different molar ratios (1:2, 1:4, and 1:8), then NS of highest solubilization extent for AC were complexed with AC. AC loaded NS (AC-NS) were characterized for various physicochemical properties. Pharmacokinetic, pharmacodynamics and histological finding of AC-NS were performed in rats. The prepared AC-NS showed particles size ranged from 408.7?±?12.9 to 423?±?15.9?nm while zeta potential values varied from ?21.7?±?0.90 to ?22.7?±?0.85?mV. The loading capacity varied from 17.9?±?1.21 to 34.1?±?1.16%. DSC, FT–IR, and PXRD studies confirmed the complexation of AC with NS and amorphous state of the drug in the complex. AC-NS displayed a biphasic release pattern with increase in the dissolution rate of AC as compared to plain AC. Oral administration of AC-NS (1:4 w/w, drug: NS) to rats led to 2.13-folds increase in the bioavailability as compared to AC suspension. Pharmacodynamics studies in rats with fatty liver revealed significant reduction (p?in vivo performance of AC.  相似文献   

17.
Context: Hydrophilic and hydrophobic polymer-based nicorandil (10 mg)-loaded peroral tablets were prepared using the wet granulation technique. The influence of varying amounts of hydroxypropyl methylcellulose (HPMC) (30–50 mg), ethylcellulose (2–4 mg), microcrystalline cellulose (5–20 mg) and Aerosil® (5–12 mg) in conjunction with the constant amounts (3 mg) of glidant and lubricant (magnesium stearate and talc) on the in vitro performances of the tablets (hardness, friability, weight variation, thickness uniformity, drug content, and drug release behavior) were investigated. Objective: The objectives of this study were (i) to select a nicorandil-loaded peroral tablet that matched the in vitro dissolution profile of once-daily commercial sustained-release tablet, and (ii) to compare the in vivo sustaining/controlling efficacy of the selected peroral tablet with that of its commercial counterparts. Results and Discussion: Because the nicorandil (10 mg)-loaded tablet prepared based on F-IX composition (50 mg HPMC, 4 mg ethylcellulose, 10 mg MCC and 3 mg glidant and lubricant) showed a release profile comparable to that of the Nikoran® OD SR tablet release profile, the tablet with this composition was considered to be the optimized/selected formulation and, therefore, was subjected to stability study and in vivo study in rabbits. Despite of the higher Cmax and AUC values obtained with the optimized tablet, there was no sign of difference between the optimized- and Nikoran® OD SR- tablets following a single-dose crossover oral administration into rabbit. Conclusion: The optimized tablet could be used as an alternative to the commercial once-daily tablet.  相似文献   

18.
The aim of this study was to evaluate the potential of preactivated thiolated pectin (Pec-Cys-MNA) for buccal drug delivery. Therefore, a gel formulation containing this novel polymer and the model drug lidocaine was prepared and investigated in vitro in terms of rheology, mucoadhesion, swelling behavior and drug release in comparison to formulations based on pectin (Pec) and thiolated pectin (Pec-Cys). Both pectin derivatives showed gel formation without addition of any other excipient due to self-crosslinking thiol groups. Under same conditions, pectin did not show gel formation. Viscosity of Pec-Cys-based formulation increased 92-fold and viscosity of Pec-Cys-MNA-based formulations by 4958-fold compared to pectin-based formulation. Gels did not dissolve in aqueous environment during several hours and were able to take up water. Mucoadhesion of pectin on buccal tissue could be improved significantly, value of total work of adhesion increased in the following rank order: Pec-Cys-MNA?>?Pec-Cys?>?Pec. The retention time of a model drug incorporated in gel formulations on buccal mucosa under continuous rinsing with phosphate-buffered saline was prolonged, after 1.5?h 3-fold higher amount of a model drug was to be found on tissue after application of Pec-Cys-MNA-based formulation compared to pectin-based and 2-fold compared to Pec-Cys-based formulation. The Pec-Cys-MNA-based gel showed a more sustained release of lidocaine than Pec-Cys-based gel, whereas pectin solution revealed an immediate release. According to these results, the self-crosslinking pectin-derivative is a promising tool for buccal application.  相似文献   

19.
Slow-release buccal bioadhesive tablets of miconazole nitrate were prepared by using polymer mixtures of buccoadhesive materials such as hydroxypropylmethylcellulose, sodium carboxymethylcellulose, carbopol 934p, and sodium alginate. The physicochemical properties, swelling index, microenvironment pH, in vitro drug release, in vivo buccoadhesion time, and miconazole salivary concentrations of the prepared tablets were shown to be dependent on the type and composition of the buccoadhesive materials used. The dissolution of miconazole from all the prepared tablets into phosphate buffer (pH 6.8) was controlled and followed non-Fickian release mechanisms. All the prepared tablets gave reasonable buccoadhesion time (2.45-3.65 hr). Infrared spectroscopy and differential scan calorimetry studies revealed the absence of significant interactions between miconazole nitrate and the selected buccoadhesive materials. Duration of the antifungal activity as measured by the inhibition zone of Candida albicans by extracted human saliva was significantly longer (p < 0.05), compared with commercial miconazole oral gel (Daktaren oral gel). Based on the results obtained, the prepared slow-release buccoadhesive tablets of miconazole would markedly prolong the duration of the antifungal activity with more patient convenience.  相似文献   

20.
Background: Flavopiridol (FLAP) is a promising chemotherapeutic agent undergoing clinical phase I and phase II trials, and a number of studies have elucidated its hepatic metabolism and biliary disposition.

Methods: In present study, the intestinal disposition of orally administered FLAP was characterized through pharmacokinetic studies in rats as well as absorption and metabolism studies using a Caco-2 cell culture and four-site perfused rat intestinal models.

Results: Pharmacokinetic results show that FLAP has high bioavailability (> 75%), long T1/2 (> 260 min), and short peak time (<20 min). In the Caco-2 cell culture model, the bidirectional permeability of FLAP was 0.47 × 10?5 cm/s to 1.53 × 10?5 cm/s and the efflux ratios were 3.27 and 2.17 at 10 and 30 μM, respectively. Apical loading of two P-glycoprotein (P-gp) inhibitors, cyclosporine A and verapamil, significantly increased the intracellular amount of FLAP and lowered its efflux ratio. In the four-site model, 10 and 40 μM FLAP perfusions were well absorbed at various regions of the intestine, and the biliary excretions of FLAP glucuronides were 1.60–2.84 nmol and 12.47–17.33 nmol, respectively.

Conclusion: FLAP possesses high oral bioavailability and good absorption in the intestine, in which FLAP may be subjected to a P-gp efflux. Biliary excretion is the main elimination pathway for FLAP glucuronide and its enterohepatic cycling could be indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号