首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to formulate and optimize gliclazide-loaded Eudragit nanoparticles (Eudragit L100 and Eudragit RS) as a sustained release carrier with enhanced efficacy. Eudragit L 100 nanoparticles (ELNP) were prepared by controlled precipitation method whereas Eudragit RSPO nanoparticles (ERSNP) were prepared by solvent evaporation method. The influence of various formulation factors (stirring speed, drug:polymer ratio, homogenization, and addition of surfactants) on particle size, drug loading, and encapsulation efficiency were investigated. The developed Eudragit nanoparticles (L100 and RS) showed high drug loading and encapsulation efficiencies with nanosize. Mean particle size altered by changing the drug:polymer ratio and stirring speed. Addition of surfactants showed a promise to increase drug loading, encapsulation efficiency, and decreased particle size of ELNP as well as ERSNP. Dissolution study revealed sustained release of gliclazide from Eudragit L100 as well as Eudragit RSPO NP. SEM study revealed spherical morphology of the developed Eudragit (L100 and RS) NP. FT-IR and DSC studies showed no interaction of gliclazide with polymers. Stability studies revealed that the gliclazide-loaded nanoparticles were stable at the end of 6 months. Developed Eudragit NPs revealed a decreased tmin (ELNP), and enhanced bioavailability and sustained activity (ELNP and ERSNP) and hence superior activity as compared to plain gliclazide in streptozotocin induced diabetic rat model and glucose-loaded diabetic rat model. The developed Eudragit (L100 and RSPO) NP could reduce dose frequency, decrease side effects, and improve patient compliance.  相似文献   

2.
In this paper, we present in vitro and in vivo release data on pH-sensitive microspheres of Eudragit L100, Eudragit RS100 and their blend systems prepared by double emulsion-solvent evaporation technique for oral delivery of insulin. Of the three systems developed, Eudragit L100 was chosen for preclinical studies. Insulin was encapsulated and in vitro experiments performed on insulin-loaded microspheres in pH 1.2 media did not release insulin during the first 2?h, but maximum insulin was released in pH 7.4 buffer media from 4 to 6?h. The microspheres were characterized by scanning electron microscopy to understand particle size, shape and surface morphology. The size of microspheres ranged between 1 and 40?µm. Circular dichroism spectra indicated the structural integrity of insulin during encapsulation as well as after its release in pH 7.4 buffer media. The in vivo release studies on diabetic-induced rat models exhibited maximum inhibition of up to 86%, suggesting absorption of insulin in the intestine.  相似文献   

3.
We have prepared polymeric drug nanoparticles by oil in water (O/W) emulsion solvent evaporation method. We used acetone as solvent for polymer and water as non-solvent. The purpose of this study is to use the emulsion solvent evaporation method in order to prepare nanoparticles and to investigate the effects of the various processing parameters to the characteristics of the nanoparticles. In this research, we use two different forms of acrylic polymers, Eudragit E100 and Eudragit RS. It was found that the size of the nanoparticles depends on different parameters such as the polymer concentration in the organic solvent, surfactant concentration and the volume ratio of oil and water phases. The morphology structure is investigated by transmission electron microscope (TEM). TEM images confirmed that the nanoparticles produced were spherical in shape and the successfully prepared nanoparticles with size 80?nm. The size distribution is measured by laser dynamic light scattering. The size distribution of the nanoparticles was found in the range from 50 to 150?nm. Investigation of Fourier transform infrared spectroscopy indicated the absence of the interactions between the drug and polymer. X-ray diffraction patterns of nanoparticles containing ketoprofen, Eudragit E100 and Eudragit RS showed the amorphous structure.  相似文献   

4.
Abstract

Conventional pan coating method was utilized to prepare propranolol-HCl sustained release coated beads. Eudragit RS 100 was used as release controlling materials. Overcoating of the beads with beeswax was also investigated. The beads were characterized for their particle size distribution, drug loading efficiency and their dissolution behaviour in 0.1N HCl, Most of the finished beads (72.4%) fall in the particle size range 800–1700 um. The actual drug content, calcu-lated as opposed to the theoretical drug content were 77.6% and 74.2% of the drug for the beads having particle size range 1700–1250 um and 1250–800 um respectively, The coating level of the polymer, the particle size of the beads and overcoating with beeswax play a major role in determining the release rate of the drug from the coated beads.  相似文献   

5.
A matrix based on chitosan lactate and poloxamer 407 was evaluated as a delivery system for the vaginal administration of the antifungal drug econazole. The matrix was investigated both containing the pure drug and after introducing microparticles of Eudragit RS 100 containing econazole. Eudragit RS 100 microparticles were prepared using an emulsion-extraction method and dispersed in a solution containing chitosan lactate (2% w/w) and poloxamer 407 (1.7% w/w). The microparticles, obtained with a yield of 64% w/w and an encapsulation efficiency of 42% w/w, had a diameter of less than 2 μm and a drug loading of 13% w/w. The compressed matrices, characterized by DSC, swelling, erosion, release and mucoadhesion studies, had behaviours dependent on the relative amounts of the contained microparticles. The matrix without microparticles (MECN) showed zero-order release kinetics, with a maximum drug-release of 60% w/w, while those containing 50 or 75% w/w microparticles showed a diffusion controlled release up to 8 and 16 h, respectively, and a linear trend after those time intervals, caused by the erosion process, which allowed reaching a drug-release of approximately 100% w/w at 22 h. In in vitro experiments, the matrices were mucoadhesive and active in inhibiting the growth of Candida albicans 796.  相似文献   

6.
Chitosan-prednisolone conjugate microspheres (Ch-SP-MS) were prepared, and Eudragit coating was applied in order to efficiently deliver the microspheres and drug to the intestinal disease sites. The Eudragit L100-coated microspheres (Ch-SP-MS/EuL100) were examined for particle characteristics and the release of drug and Ch-SP-MS in different pH media at 37°C. Ch‐SP-MS were spherical, with a mean size of 4.5 μm and prednisolone content of 3.3% (w/w). Ch-SP-MS/EuL100 were fairly spherical, with a mean size of 22. 5 μm and drug content of 0.32% (w/w). At pH 1.2, the release extent was less than 5% even at 48 h, and Eudragit coating tended to suppress the release. In contrast, at pH 6.8 and 7.4, Ch-SP-MS/EuL100 tended to show somewhat faster drug release than Ch-SP-MS. Ch-SP-MS/EuL100 displayed a release extent of 23 and 27% at pH 6.8 and 7.4, respectively. Ch-SP-MS aggregated at pH 1.2, but almost kept their initial size and shape at pH 6.8 and 7.4. Ch-SP-MS/EuL100 almost maintained their original shape and size at pH 1.2, and gradually released Ch-SP-MS at pH 6.8 and 7.4 due to dissolution of the Eudragit layer. Eudragit coating is suggested to be useful to efficiently deliver Ch-SP-MS to the intestinal disease sites.  相似文献   

7.
This work embodies studies, performed with micropellet type dosage forms of Pentazocine Hydrochloride (Pz-HCl), using single and composite matrices of Eudragit RS100 (RS) and RL100 (RL). The effects of formulation parameters on various dosage form criteria - namely drug loading, particle size distribution, release profiles etc. have been investigated. Results indicate, that the two polymers can be successfully combined to produce different changes in release kinetics, with simple modifications of coating composition and initial drug loads.  相似文献   

8.
Abstract

Sustained release phenylpropanolamine hydrochloride (PPH) granules and tablets were prepared using HPMC, HPMC and SCMC, Eudragit RS, Eudragit RS+L or HPMC + Eudragit RS matrices. The release pattern of PPH from the prepared granules and tablets was found to be in the following order HPMC > HPMC + SCMC > RS > RS + 1> HPMC + RS. The results revealed that, although the drug concentration was kept constant in all the prepared granules and tablets, the drug release from these formulations was clearly different and depends mainly on the type of matrix used. The presence of Eudragit L with Eudragit RS and Eudragit RS with HPMC resulted in a marked decrease in the drug release compared with that obtained from the matrix containing HPMC or Eudragit RS alone. The release data of PPH from the prepared granules and tablets were treated mathematically according to zero order, first order, Langenbuchar, modified Langenbucher and Higuchi models. The results revealed that no one model was able adequately to describe the drug release profiles from these formulations. In-vivo studies in human volunteers showed that, the peak urinary excretion of PPH occurred over a sustained period from 2 to 6.5 hr in case of HPMC + SCMC tablets and from 2 to 10 hr in case of either RS+L or HPMC + RS tablets.  相似文献   

9.
In the present work, novel nanostructures comprising of glyceryl monooleate (GMO) and Eudragit E100 were prepared using high intensity ultrasonic homogenization. 32 Factorial design approach was used for optimization of nanostructures. Results of regression analysis revealed that the amount of GMO and Eudragit E100 had a drastic effect on particle size and percent entrapment efficiency. Optimized carvedilol-loaded nanostructures (Car-NS) were characterized by FTIR, TEM, DSC, in vitro drug release study. Pharmacokinetic parameters such as Cmax, Tmax, Ke, Ka, Vd and AUC were estimated for Car-NS upon its oral administration in Sprague-Dawley rats. Particle size of Car-NS was found to be 183?±?2.43?nm with an entrapment efficiency of 81.4?±?0.512%. FTIR studies revealed loading and chemical compatibility of carvedilol with the components of nanostructures. DSC thermograms did not show endothermic peak for melting of carvedilol which could be attributed to solubilization of carvedilol in molten GMO during DSC run. The prepared Car-NS released carvedilol in sustained manner over a period of 10 h as suggested by in vitro drug release study. The pharmacokinetic study of Car-NS showed significant improvement in Cmax (two fold, p?p?相似文献   

10.
In this paper, we present in vitro and in vivo release data on pH-sensitive microspheres of Eudragit L100, Eudragit RS100 and their blend systems prepared by double emulsion-solvent evaporation technique for oral delivery of insulin. Of the three systems developed, Eudragit L100 was chosen for preclinical studies. Insulin was encapsulated and in vitro experiments performed on insulin-loaded microspheres in pH 1.2 media did not release insulin during the first 2 h, but maximum insulin was released in pH 7.4 buffer media from 4 to 6 h. The microspheres were characterized by scanning electron microscopy to understand particle size, shape and surface morphology. The size of microspheres ranged between 1 and 40 μm. Circular dichroism spectra indicated the structural integrity of insulin during encapsulation as well as after its release in pH 7.4 buffer media. The in vivo release studies on diabetic-induced rat models exhibited maximum inhibition of up to 86%, suggesting absorption of insulin in the intestine.  相似文献   

11.
ABSTRACT

The aim of the present work was to investigate the preparation of low molecular weight heparin (LMWH) nanoparticles (NP) as potential oral heparin carriers. The NP were formulated using an ultrasound probe by water-in-oil-in-water (w/o/w) emulsification and solvent evaporation with two biodegradable polymers [poly-ε-caprolactone, PCL and poly(d,l-lactic-co-glycolic acid) 50/50, PLGA] and two non-biodegradable positively charged polymers (Eudragit RS and RL) used alone or in combination. The mean diameter of LMWH-loaded NP ranged from 240 to 490 nm and was dependent on the reduced viscosity of the polymeric organic solution. The surface potential of LMWH NP prepared with Eudragit polymers used alone or blended with PCL and PLGA was changed dramatically from strong positive values obtained with unloaded NP to negative values. The highest encapsulation efficiencies were observed when Eudragit polymers took part in the composition of the polymeric matrix, compared with PCL and PLGA NP exhibiting low LMWH entrapment. The in vitro LMWH release in phosphate buffer from all formulations ranged from 10 to 25% and was more important (two- to threefold) when esterase was added into the dissolution medium. The in vitro biological activity of released LMWH, determined by the anti-factor Xa activity with a chromogenic substrate, was preserved after the encapsulation process, making these NP good candidates for oral administration.  相似文献   

12.
The nanoparticles-embedded microcapsules (NEMs) with smooth surface, good sphericity, excellent dispersivity and uniform particle size distribution were prepared by emulsification combined with electrospraying to extend the sustained release performance of the embolic microcapsules loading capecitabine (CAP). The sodium alginate and chitosan with good biocompatibility were used as the materials and CAP as a small-molecule model drug. The drug loading, encapsulation efficiency and drug release of CAP in the NEMs were investigated. The results showed that the drug-loading and encapsulation efficiency both increased with the increment of chitosan and CAP concentration. The maximum values of drug loading and encapsulation efficiency were 1.97 and 18.01 % respectively when initial CAP concentration was 5.0 g/L and chitosan molecular weight 100 kDa. The cumulative release rate of CAP released from the NEMs was lower than 30 % in 0.5 h, which indicated that there was no obvious initial burst release behavior. In the subsequent 240 h, the release results confirmed that the NEMs had better sustained release properties compared to pure microcapsules, and it might be a new anticancer drug delivery system in the future studies.  相似文献   

13.
The aim of the present work was to investigate the preparation of low molecular weight heparin (LMWH) nanoparticles (NP) as potential oral heparin carriers. The NP were formulated using an ultrasound probe by water-in-oil-in-water (w/o/w) emulsification and solvent evaporation with two biodegradable polymers [poly-epsilon-caprolactone, PCL and poly(D,L-lactic-co-glycolic acid) 50/50, PLGA] and two non-biodegradable positively charged polymers (Eudragit RS and RL) used alone or in combination. The mean diameter of LMWH-loaded NP ranged from 240 to 490 nm and was dependent on the reduced viscosity of the polymeric organic solution. The surface potential of LMWH NP prepared with Eudragit polymers used alone or blended with PCL and PLGA was changed dramatically from strong positive values obtained with unloaded NP to negative values. The highest encapsulation efficiencies were observed when Eudragit polymers took part in the composition of the polymeric matrix, compared with PCL and PLGA NP exhibiting low LMWH entrapment. The in vitro LMWH release in phosphate buffer from all formulations ranged from 10 to 25% and was more important (two- to threefold) when esterase was added into the dissolution medium. The in vitro biological activity of released LMWH, determined by the anti-factor Xa activity with a chromogenic substrate, was preserved after the encapsulation process, making these NP good candidates for oral administration.  相似文献   

14.
Paracetamol/Eudragit RS, paracetamol/ethylcellulose, and paracetamol/cellulose acetate pellets of different drug/polymer ratios (w/w) were prepared by the dissolution/solvent evaporation technique. These pellets were then characterized by particle size distribution analysis, ultraviolet (UV) spectroscopy, differential thermal analysis, and scanning electron microscopy (SEM). Hard gelatin capsules were filled with each particle size fraction of these pellets, and in vitro dissolution studies were performed to verify the capability of each series of pellets to control drug release. Pellets were spherical, presented a polynucleated microcapsule structure, and under certain experimental conditions, the yield of the preparation process reached very high values. The dissolution studies pointed out the slow paracetamol release from these pellets.  相似文献   

15.
Conventional pan coating method was utilized to prepare propranolol-HCl sustained release coated beads. Eudragit RS 100 was used as release controlling materials. Overcoating of the beads with beeswax was also investigated. The beads were characterized for their particle size distribution, drug loading efficiency and their dissolution behaviour in 0.1N HCl, Most of the finished beads (72.4%) fall in the particle size range 800-1700 um. The actual drug content, calcu-lated as opposed to the theoretical drug content were 77.6% and 74.2% of the drug for the beads having particle size range 1700-1250 um and 1250-800 um respectively, The coating level of the polymer, the particle size of the beads and overcoating with beeswax play a major role in determining the release rate of the drug from the coated beads.  相似文献   

16.
Paracetamol/Eudragit RS, paracetamol/ethylcellulose, and paracetamol/cellulose acetate pellets of different drug/polymer ratios (w/w) were prepared by the dissolution/solvent evaporation technique. These pellets were then characterized by particle size distribution analysis, ultraviolet (UV) spectroscopy, differential thermal analysis, and scanning electron microscopy (SEM). Hard gelatin capsules were filled with each particle size fraction of these pellets, and in vitro dissolution studies were performed to verify the capability of each series of pellets to control drug release. Pellets were spherical, presented a polynucleated microcapsule structure, and under certain experimental conditions, the yield of the preparation process reached very high values. The dissolution studies pointed out the slow paracetamol release from these pellets.  相似文献   

17.
Chitosan-prednisolone conjugate microspheres (Ch-SP-MS) were prepared, and Eudragit coating was applied in order to efficiently deliver the microspheres and drug to the intestinal disease sites. The Eudragit L100-coated microspheres (Ch-SP-MS/EuL100) were examined for particle characteristics and the release of drug and Ch-SP-MS in different pH media at 37°C. Ch-SP-MS were spherical, with a mean size of 4.5 μm and prednisolone content of 3.3% (w/w). Ch-SP-MS/EuL100 were fairly spherical, with a mean size of 22. 5 μm and drug content of 0.32% (w/w). At pH 1.2, the release extent was less than 5% even at 48 h, and Eudragit coating tended to suppress the release. In contrast, at pH 6.8 and 7.4, Ch-SP-MS/EuL100 tended to show somewhat faster drug release than Ch-SP-MS. Ch-SP-MS/EuL100 displayed a release extent of 23 and 27% at pH 6.8 and 7.4, respectively. Ch-SP-MS aggregated at pH 1.2, but almost kept their initial size and shape at pH 6.8 and 7.4. Ch-SP-MS/EuL100 almost maintained their original shape and size at pH 1.2, and gradually released Ch-SP-MS at pH 6.8 and 7.4 due to dissolution of the Eudragit layer. Eudragit coating is suggested to be useful to efficiently deliver Ch-SP-MS to the intestinal disease sites.  相似文献   

18.
The aim of the present work was to investigate the preparation of nanoparticles as a potential drug carrier in the treatment of various inflammatory diseases. A nanoprecipitation method was used to entrap betamethasone in a poly[ε-caprolactone] matrix. Process parameters such as the initial drug load, the surfactants (polyvinyl alcohol, PVA; sodium cholate, SC), and their concentration in the aqueous phase were analyzed for their influences on particle properties. Particle size changed with increasing surfactant concentrations (PVA: 250 to 400 nm; sodium cholate: 330 to 150 nm) due to changes in interface stability and viscosity of the aqueous phase. The zeta potential was around neutrality with PVA and between - 28 and - 42 mV with SC. Betamethasone encapsulation rates of about 75% and 90% slightly increased with higher surfactant concentration. Drug release profiles exhibited an initial burst release with both surfactants, PVA (8-18%) or SC (25-35%) followed by a sustained release delivering 15% to 40% of the entrapped drug within 48 hours. The present nanoparticulate formulations exhibit promising properties of a colloidal drug carrier for betamethasone. Although SC seems to be advantageous due to its biocompatibility, in terms of sustained drug release pattern, the use of PVA is favorable.  相似文献   

19.
Abstract

This work embodies studies, performed with micropellet type dosage forms of Pentazocine Hydrochloride (Pz-HCl), using single and composite matrices of Eudragit RS100 (RS) and RL100 (RL). The effects of formulation parameters on various dosage form criteria - namely drug loading, particle size distribution, release profiles etc. have been investigated. Results indicate, that the two polymers can be successfully combined to produce different changes in release kinetics, with simple modifications of coating composition and initial drug loads.  相似文献   

20.
Abstract

A controlled release oral drug delivery system of Indomethacin was developed using nonpareil seeds as a matrix system. These seeds were coated with different concentrations of drug release controlling materials viz Eudragit RL100 and Eudragit RS100, and bees wax. The particle size of the seeds and the concentration as well as the type of the drug release controlling Eudragits has a pronounced effect on the release rate profile of Indomethacin. All types of formulations showed release rate pattern which can be described by both first-order and diffusion controlled mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号