首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purpose: This research work entails quality by design (QbD)-based systematic development of nanostructured lipid carriers (NLCs) of Olmesartan medoxomil (OLM) with improved biopharmaceutical attributes.

Methods: Quality target product profile (QTPP) was defined and critical quality attributes (CQAs) were earmarked. Solubility of drug was performed in various lipids for screening of them. NLCs were prepared by hot-microemulsion method using solid lipids, liquid lipids and surfactants with maximal solubility. Failure mode and effect analysis (FMEA) was carried out for identifying high risk formulation and process parameters. Further, principal component analysis (PCA) was applied on high risk parameters for evaluating the effect of type and concentration of lipids and surfactants on CQAs. Further, systematic optimization of critical material attributes (CMAs) was carried out using face centered cubic design and optimized formulation was identified in the design space.

Results: FMEA and PCA suggested suitability of stearic acid, oleic acid and Tween 80 as the CMAs for NLCs. Response surface optimization helped in identifying the optimized NLC formulation with particle size ~250?nm, zeta potential <25?mV, entrapment efficiency >75%, in vitro drug release >80% within 6?h. Release kinetic modeling indicated drug release through Fickian-diffusion mechanism.

Conclusions: Overall, these studies indicated successful development of NLCs using multivariate statistical approaches for improved product and process understanding.  相似文献   

2.
The purpose of this study was to describe the raw material variability that influenced the in-vitro dissolution behavior of high drug-load sustained-release matrix tablet and to ensure the consistent quality of the final product. The Panax notoginseng saponins (PNS) – hydroxypropyl methylcellulose – anhydrous lactose – magnesium stearate (57:20:23:0.5%, w/w) was used as the model formulation. PNS extract powders with lot-to-lot and source-to-source differences were collected to cover the common cause variations and their physicochemical properties were characterized by the chromatographic fingerprints and the SeDeM expert system. It was found that the release behavior of active pharmaceutical ingredients (APIs) in PNS from different batches exhibited considerable variations. Latent variable modeling results demonstrated that the physical properties of raw materials played major roles in predicting the drug dissolution. PNS extracts with high specific surface area, the width of particle size distribution and hygroscopicity or low moisture content led to an increase in drug release. In order to perform efficient pass/fail judgments for incoming new materials, multivariate specifications of critical material attributes (CMAs) were established and the multivariate design space in line with the quality by design (QbD) principles was explored to achieve the release target.  相似文献   

3.
The objectives of this study were to develop a predictive statistical model for low-fill-weight capsule filling of inhalation products with dosator nozzles via the quality by design (QbD) approach and based on that to create refined models that include quadratic terms for significant parameters. Various controllable process parameters and uncontrolled material attributes of 12 powders were initially screened using a linear model with partial least square (PLS) regression to determine their effect on the critical quality attributes (CQA; fill weight and weight variability). After identifying critical material attributes (CMAs) and critical process parameters (CPPs) that influenced the CQA, model refinement was performed to study if interactions or quadratic terms influence the model. Based on the assessment of the effects of the CPPs and CMAs on fill weight and weight variability for low-fill-weight inhalation products, we developed an excellent linear predictive model for fill weight (R2?=?0.96, Q2?=?0.96 for powders with good flow properties and R2?=?0.94, Q2?=?0.93 for cohesive powders) and a model that provides a good approximation of the fill weight variability for each powder group. We validated the model, established a design space for the performance of different types of inhalation grade lactose on low-fill weight capsule filling and successfully used the CMAs and CPPs to predict fill weight of powders that were not included in the development set.  相似文献   

4.
At the beginning of the twentieth century, Sir Ronald Fisher introduced the concept of applying statistical analysis during the planning stages of research rather than at the end of experimentation. When statistical thinking is applied from the design phase, it enables to build quality into the product, by adopting Deming’s profound knowledge approach, comprising system thinking, variation understanding, theory of knowledge, and psychology.

The pharmaceutical industry was late in adopting these paradigms, compared to other sectors. It heavily focused on blockbuster drugs, while formulation development was mainly performed by One Factor At a Time (OFAT) studies, rather than implementing Quality by Design (QbD) and modern engineering-based manufacturing methodologies.

Among various mathematical modeling approaches, Design of Experiments (DoE) is extensively used for the implementation of QbD in both research and industrial settings. In QbD, product and process understanding is the key enabler of assuring quality in the final product. Knowledge is achieved by establishing models correlating the inputs with the outputs of the process. The mathematical relationships of the Critical Process Parameters (CPPs) and Material Attributes (CMAs) with the Critical Quality Attributes (CQAs) define the design space. Consequently, process understanding is well assured and rationally leads to a final product meeting the Quality Target Product Profile (QTPP).

This review illustrates the principles of quality theory through the work of major contributors, the evolution of the QbD approach and the statistical toolset for its implementation. As such, DoE is presented in detail since it represents the first choice for rational pharmaceutical development.  相似文献   


5.
A quality-by-design approach was adopted to develop telmisartan potassium (TP) tablets, which were bioequivalent with the commercially available Micardis® (telmisartan free base) tablets. The dissolution pattern and impurity profile of TP tablets differed from those of Micardis® tablets because telmisartan free base is poorly soluble in water. After identifying the quality target product profile and critical quality attributes (CQAs), drug dissolution, and impurities were predicted to be risky CQAs. To determine the exact range and cause of risks, we used the risk assessment (RA) tools, preliminary hazard analysis and failure mode and effect analysis to determine the parameters affecting drug dissolution, impurities, and formulation. The range of the design space was optimized using the face-centered central composite design among the design of experiment (DOE) methods. The binder, disintegrant, and kneading time in the wet granulation were identified as X values affecting Y values (disintegration, hardness, friability, dissolution, and impurities). After determining the design space with the desired Y values, the TP tablets were formulated and their dissolution pattern was compared with that of the reference tablet. The selected TP tablet formulated using design space showed a similar dissolution to that of Micardis® tablets at pH 7.5. The QbD approach TP tablet was bioequivalent to Micardis® tablets in beagle dogs.  相似文献   

6.
Abstract

The purpose of this study was the development of novel, fast disintegrating, effervescent pellets by employing the direct pelletization technique as a single step process. In line with the Quality by Design (QbD) regulatory framework, statistical experimental design was extensively applied to correlate significant formulation and process variables with the critical quality attributes of the product. Pellets were studied with regards to sphericity, size and size distribution. In contrast to the existing multiparticulate platforms, this development integrated only water-soluble excipients to facilitate the multifunctional use of the final dosage form. The application of a screening fractional factorial design augmented to a full factorial design set the roadmap for the rational selection of the composition and process parameters, revealing in parallel the positive contribution of the powder feeder on the CQAs, when the critical process and formulation factors were properly adjusted. The response surface methodology was exploited for the final process optimization phase, which allowed the construction of appropriate mathematical models connecting the input variables and the CQAs under study. The implementation of the desirability function, lead to the optimum formulation and process settings for the production of pellets with narrow size distribution and geometric mean diameter of approximately 800?μm. In conclusion, using a lean approach supported by design of experiments (DoE) techniques within the QbD framework, a novel multifunctional formulation platform has been developed.  相似文献   

7.
This study highlights the advantages of using a Quality by Design (QbD) approach in order to gain a more comprehensive understanding of the freeze-drying process of pravastatin-loaded long-circulating liposomes (LCL-PRAV). Within the QbD paradigm, the present study aimed to establish the design space for the optimization of freeze-dried LCL-PRAV by means of Design of Experiment (DOE). The encapsulated solute retention (ESR), the average particle size, and zeta potential after freeze-drying, the residual moisture content, the macroscopic cake appearance, the glass transition temperature (Tg) of the freeze-dried cake, and the primary drying time were defined as critical quality attributes (CQAs) for the freeze-dried final product. Further on, the influence of lyoprotectant type, freezing rate, shelf temperature during primary drying, and the presence of an annealing step on the CQAs was investigated through a 21-run D-optimal experimental design. Three-dimensional response surfaces were generated to complete the statistical analysis and for a better understanding of the influence of variables and their interactions on the responses. The developed model was then used to build the design space for the freeze-dried liposomes, within which the product quality was assured and the process variability was minimized.  相似文献   

8.
The objective of the present study was to develop a sustained release gastro-retentive (SRGR) tablet formulation of nicardipine hydrochloride (HCl) for once-a-day dosing using the quality by design (QbD) approach. The quality target product profile of nicardipine HCl SRGR tablet formulation was defined, and critical quality attributes (CQAs) were identified. Potential risk factors were identified using a fish bone diagram and failure mode effect analysis (FMEA) tool and screened by the Plackett–Burman design, and finally nicardipine HCl SRGR tablet formulation was optimized using the Box–Behnken design. The tablets were prepared by a direct compression technique using polymers such as hydroxypropylmethylcellulose (HPMC K15M), glyceryl behenate, alone or in combinations and other standard excipients. Sodium bicarbonate was incorporated as a gas-generating agent. The effects of polymers and sodium bicarbonate on the drug release profile and floating properties were investigated as these parameters are likely to affect the desired once-a-day dosing regimen and finally the therapeutic efficacy of SRGR drug delivery systems. It was observed that formulation variables X1: Glyceryl behenate (mg/tab) and X2: HPMC K15M (mg/tab) strikingly influenced the drug release (%) (Y1), whereas floating lag time (min) (Y2) was significantly impacted by the formulation variable X3: Sodium bicarbonate (mg/tab). A design space plot within which the CQAs remained unchanged was established at a lab scale. In conclusion, this study demonstrated the suitability of a glyceryl behenate-HPMC K15M polymer combination along with sodium bicarbonate to achieve SRGR tablet formulation for once-a-day dosing of nicardipine HCl using the systematic QbD approach.  相似文献   

9.
Understanding the relationship between high shear wet granulation processing parameters and the characteristics of intermediate and final products is crucial in the ability to apply quality by design (QbD) and process analytical technologies (PAT) to secondary pharmaceutical processes. This research examined a high shear wet granulation process and subsequent manufacturing of a tablet containing a biopharmaceutics classification system (BCS) class II drug, gliclazide (low solubility, high permeability). Previous studies have concentrated on either granulation or tabletting but not both together; this work brings together the analysis as a single large multivariate process. The design of experiment (DoE) was performed according to an L9 Taguchi method with three replications, in total; thirty-six runs were performed. A full statistical analysis relating both granule and tablet properties to selected process parameters were carried out. The research illustrates that mapping a highly multivariate process is possible. Statistically significant critical process parameters were identified for granule hardness, granule density and granule particle size. These granule properties were also identified as contributing to the dissolution release characteristics. Dissolution modeling and prediction was achieved within the DoE structure. Process noise was identified and measured across the entire production and specifically with respect to the milling process.  相似文献   

10.
Objective: Design of Experiment (DoE), that is a tool of Quality by Design (QbD) paradigm, with which experiments can be planned more effectively and provide more information, while after Design Space (DS) can be set up, which assure the quality of the desired product. The aim of this study was to find the optimal drug-excipient ratio and the optimal process parameters (milling time, milling speed) of our previously used dry co-milling method and validate the DS.

Materials and methods: Lamotrigine (LAM), an antiepileptic drug was used as a model API. Poly-vinyl alcohol (PVA) was chosen according to our previous study as a hydrophylic matrix polymer. Milling time, speed, and the API:additive ratio was varied to find out their effect on the product. The optimization was performed on particle size of LAM, its standard deviation and the in vitro dissolution of the samples. Response surface modeling completed the statistical analysis that assessed the effects of independent variables on the responses.

Results: Due to the DS estimation, a more economical sample preparation method was set up. Finally, the sample that was prepared according to the optimized parameters (1.5?h, 400?rpm, 0.8 PVA:LAM ratio) showed around 100?nm drug particles and 97% drug release in five minutes.

Conclusion: From the DS generated by the software, an optimal formulation was obtained and the results validated the experimental design. The QbD approach was a useful and effective tool of understanding the parameters that affect the quality of the desired product.  相似文献   

11.
The objective of this study was to provide quality by design (QbD) approach for development of suspension type nasal spray products. Quality target product profile (QTPP) of test product budesonide nasal suspension (B-NS) was defined and critical quality attributes (CQAs) were identified. Critical formulation, process and delivery device variables were recognized. Risk assessment was performed by using failure mode and effect analysis (FMEA) methodology. Selected variables were further assessed using a Plackett Burman screening study. A response surface design consisting of the critical factors was used to study the interactions between the study variables. Formulation variable X2: median particle size of budesonide (D50) (µ) has strikingly influenced dissolution (%) (Y1), while D50 droplet size distribution (µm) (Y2) was significantly impacted by formulation variable X1: Avicel RC 591 (%) and process variable X4: homogenization speed (rpm). A design space plot within which the CQAs remained unchanged was established at lab scale. A comprehensive approach for development of B-NS product based on the QbD methodology has been demonstrated. The accuracy and robustness of the model were confirmed by comparability of the predicted value generated by model with the observed value.  相似文献   

12.
Design of experiments (DOE), a component of Quality by Design (QbD), is systematic and simultaneous evaluation of process variables to develop a product with predetermined quality attributes. This article presents a case study to understand the effects of process variables in a bead milling process used for manufacture of drug nanoparticles. Experiments were designed and results were computed according to a 3-factor, 3-level face-centered central composite design (CCD). The factors investigated were motor speed, pump speed and bead volume. Responses analyzed for evaluating these effects and interactions were milling time, particle size and process yield. Process validation batches were executed using the optimum process conditions obtained from software Design-Expert® to evaluate both the repeatability and reproducibility of bead milling technique. Milling time was optimized to <5?h to obtain the desired particle size (d90?相似文献   

13.
The aim of this work was to study the application of design of experiment (DoE) approach in defining design space for granulation and tableting processes using a novel gentle-wing high-shear granulator. According to quality-by-design (QbD) prospective, critical attributes of granules, and tablets should be ensured by manufacturing process design. A face-centered central composite design has been employed in order to investigate the effect of water amount (X1), impeller speed (X2), wet massing time (X3), and water addition rate (X4) as independent process variables on granules and tablets characteristics. Acetaminophen was used as a model drug and granulation experiments were carried out using dry addition of povidone k30. The dried granules have been analyzed for their size distribution, density, and flow pattern. Additionally, the produced tablets have been investigated for; weight uniformity, breaking force, friability and percent capping, disintegration time, and drug dissolution. Results of regression analysis showed that water amount, impeller speed and wet massing time have significant (p?相似文献   

14.
Objective: This study proposed the development of oral lyophilisates with respect to pediatric medicine development guidelines, by applying risk management strategies and DoE as an integrated QbD approach.

Methods: Product critical quality attributes were overviewed by generating Ishikawa diagrams for risk assessment purposes, considering process, formulation and methodology related parameters. Failure Mode Effect Analysis was applied to highlight critical formulation and process parameters with an increased probability of occurrence and with a high impact on the product performance. To investigate the effect of qualitative and quantitative formulation variables D-optimal designs were used for screening and optimization purposes.

Results: Process parameters related to suspension preparation and lyophilization were classified as significant factors, and were controlled by implementing risk mitigation strategies. Both quantitative and qualitative formulation variables introduced in the experimental design influenced the product’s disintegration time, mechanical resistance and dissolution properties selected as CQAs. The optimum formulation selected through Design Space presented ultra-fast disintegration time (5?seconds), a good dissolution rate (above 90%) combined with a high mechanical resistance (above 600?g load).

Conclusions: Combining FMEA and DoE allowed the science based development of a product with respect to the defined quality target profile by providing better insights on the relevant parameters throughout development process. The utility of risk management tools in pharmaceutical development was demonstrated.  相似文献   

15.
Bicalutamide (BCT), an anticancer drug, suffers from dissolution rate limited bioavailability and poor micromeritic properties. Spherical crystallization involves the formation of spherical agglomerates with enhanced dissolution properties, obviating the need for further granulation process. The present investigation was focused on spherical agglomeration of BCT by quasi-emulsion solvent diffusion method. All the responses were subjected to principal component analysis to scrutinize the critical attributes. Further for optimization, X1; influence of phase ratio, X2; amount of PEG 6000 and X3; stirring speed on critical dependent variables was studied by employing the Box-Behnken experimental design. The agglomerates exhibited better flow properties, higher bulk density, and improved compressibility compared to pure powder drug. In-vitro release studies revealed enhancement of dissolution properties of poorly soluble BCT. Characterization studies carried out by differential scanning calorimeter and powder X-ray diffractometer revealed crystallinity of drug with decreased intensity in the formulation. Scanning electron microscopy showed spherical shape agglomerates of BCT. The residual solvents were largely below the permitted limits. Spherical agglomerates demonstrated enhanced dissolution properties on account of reduced particle size and partial conversion into amorphous form. Thus, spherical agglomerates of BCT seem to be a promising approach to ameliorate the dissolution properties which might thereby improve its bioavailability.  相似文献   

16.
The present work is aimed to develop and optimize pulsatile delivery during dissolution of an improved formulation of valsartan to coordinate the drug release with circadian rhythm. Preliminary studies suggested that β cyclodextrin could improve the solubility of valsartan and showed AL type solubility curve. A 1:1 stoichiometric ratio of valsartan to β cyclodextrin was revealed from phase solubility studies and Job’s plot. The prepared complex showed significantly better dissolution efficiency (p?<?0.05) compared to pure drug, which could be due to the formation of inclusion complex as revealed from FTIR and DSC studies. Continuous dissolution-absorption studies revealed that absorption of drug from valsartan β cyclodextrin complex was significantly higher (p?2 full factorial design was used to measure the response of HPMC K4M and EC on lag time and time taken for 90% drug release (T90). The optimized batch prepared according to the levels obtained from the desirability function had a lag time of 6?h and consisted of HPMC K4M:ethylcellulose in a 1:1.5 ratio with 180?mg of coating and revealed a close agreement between observed and predicted value (R2?=?0.9694).  相似文献   

17.
The concept of quality by design (QbD) has recently been adopted for the development of pharmaceutical processes to ensure a predefined product quality. Focus on applying the QbD concept to analytical methods has increased as it is fully integrated within pharmaceutical processes and especially in the process control strategy. In addition, there is the need to switch from the traditional checklist implementation of method validation requirements to a method validation approach that should provide a high level of assurance of method reliability in order to adequately measure the critical quality attributes (CQAs) of the drug product. The intended purpose of analytical methods is directly related to the final decision that will be made with the results generated by these methods under study. The final aim for quantitative impurity assays is to correctly declare a substance or a product as compliant with respect to the corresponding product specifications. For content assays, the aim is similar: making the correct decision about product compliance with respect to their specification limits. It is for these reasons that the fitness of these methods should be defined, as they are key elements of the analytical target profile (ATP). Therefore, validation criteria, corresponding acceptance limits, and method validation decision approaches should be settled in accordance with the final use of these analytical procedures. This work proposes a general methodology to achieve this in order to align method validation within the QbD framework and philosophy. β-Expectation tolerance intervals are implemented to decide about the validity of analytical methods. The proposed methodology is also applied to the validation of analytical procedures dedicated to the quantification of impurities or active product ingredients (API) in drug substances or drug products, and its applicability is illustrated with two case studies.  相似文献   

18.
Abstract

Physicochemical evaluation of polyethylene oxide (PEO) polymers with various molecular weights was performed at molecular (polymeric dispersion) and bulk level (powders, polymeric films, and tablets) with the aim of specifying polymer critical material attributes with the main contribution to drug release from prolonged-release tablets (PRTs). For this purpose, grades of PEO with low, medium, and high viscosity were used for formulating PRTs with a good soluble drug substance (dose solubility volume 15?ml). The results revealed a good correlation (r2=0.88) between in?vivo data (pharmacokinetic parameters: Cmax and AUC) and the elastic property of PEO films determined with the nanoindentation method, demonstrating that film level can also be used for the in?vivo prediction of drug dissolution. The study confirmed that polymer molecular weight and its viscosity are the most important critical material attributes affecting drug dissolution (in?vitro) and in?vivo bioavailability (e.g. Cmax and AUC). Our research revealed that the nanoindentation technique can distinguish well between various types of polymers, classifying PEO as the most ductile and polyvinyl alcohol as the most brittle. Finally, our study provides an approach for the determination of exact physical attributes of PEO as a critical material attribute from clinically relevant data, and it therefore fulfills the basic principles of product development by Quality by Design.  相似文献   

19.
Wet granulation is mostly used process for manufacturing matrix tablets. Compared to the direct compression method, it allows for a better flow and compressibility properties of compression mixtures. Granulation, including process parameters and tableting, can influence critical quality attributes (CQAs) of hydrophilic matrix tablets. One of the most important CQAs is the drug release profile. We studied the influence of granulation process parameters (type of nozzle and water quantity used as granulation liquid) and tablet hardness on the drug release profile. Matrix tablets contained HPMC K4M hydrophilic matrix former and carvedilol as a model drug. The influence of selected HPMC characteristics on the drug release profile was also evaluated using two additional HPMC batches. For statistical evaluation, partial least square (PLS) models were generated for each time point of the drug release profile using the same number of latent factors. In this way, it was possible to evaluate how the importance of factors influencing drug dissolution changes in dependence on time throughout the drug release profile. The results of statistical evaluation show that the granulation process parameters (granulation liquid quantity and type of nozzle) and tablet hardness significantly influence the release profile. On the other hand, the influence of HPMC characteristics is negligible in comparison to the other factors studied. Using a higher granulation liquid quantity and the standard nozzle type results in larger granules with a higher density and lower porosity, which leads to a slower drug release profile. Lower tablet hardness also slows down the release profile.  相似文献   

20.
The purpose of this study was to apply the optimization method incorporating artificial neural network (ANN) using pH-independent release of weakly basic drug, carvedilol from HPMC-based matrix formulation. Because of weakly basic nature of carvedilol, drug shows pH-dependent solubility. The enteric polymer EUDRAGIT L100 was added formulations to overcome pH-dependent solubility of carvedilol. Effects of the Hydroxypropylmethyl cellulose (HPMC) K4M and EUDRAGIT L100 amount on drug release were investigated. For this purpose 13 kinds of formulations were prepared at three different levels of each variables. The optimization of the formulation was evaluated by using ANN method. Two formulation parameters, the amounts of HPMC K4M and Eudragit L100 at three levels (?1, 0, 1) were selected as independent/input variables. In-vitro dissolution sampling times at twelve different time points were selected as dependent/output variables. By using experimental dissolution results and amount of HPMC K4M and EUDRAGIT L100, percentage of dissolved carvedilol was predicted by ANN. Similarity factor (f2) between predicted and experimentally observed profile was calculated and f2 value was found 76.33. This value showed that there was no difference between predicted and experimentally observed drug release profile. As a result of these experiments, it was found that ANNs can be successfully used to optimize controlled release drug delivery systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号