首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carvedilol has been made into a novel osmotic pump tablet which includes Gelucire 44/14, Lutrol F68, Transcutol P, silicon dioxide, mannitol, citric acid, and sodium hydrogen carbonate. The Self-emulsifying osmotic pump tablet (SEOPT) has two outstanding features. It could improve the bioavailability of carvedilol by self-emulsifying drug delivery system (SEDDS), control the release rate and make the plasma concentrations more stable by elementary osmotic pump tablet. The results of transmission electron microscope (TEM) and particle size assessment showed that the shape of the resultant emulsion was round and regular, the average diameter of the particles was 246 nm. Since the solubility of carvedilol was improved by the emulsion, the elementary SEOPT could guarantee a complete release of carvedilol under the osmotic pressure of mannitol. The cumulative release at 12 hr was 85.18%. Therefore the disadvantage that lipophilic drugs can not be released completely when prepared into elementary osmotic pump tablet was resolved. The results of Differential scanning calorimetry (DSC), Infrared spectroscopy (IR) and X-ray diffraction diffraction (XRD) proved that carvedilol was amorphous in the preparation. The relative bioavailability of carvedilol in beagle dogs was 156.78%. The plasma concentrations were more stable compared with that of commercially available tablet (Luode®). And the in vitro and in vivo correlation was good (r = 0.9725). Therefore, the elementary SEOPT developed in this paper might provide a new idea for preparing lipophilic drugs into osmotic pump tablet conveniently.  相似文献   

2.
The objectives of this work was preparation and evaluation of the mucoadhesive elementary osmotic pump tablets of trimetazidine hydrochloride to achieve desired controlled release action and augmentation of oral drug absorption. The drug-loaded core tablets were prepared employing the suitable tableting excipients and coated with polymeric blend of ethyl cellulose and hydroxypropyl methylethylcellulose E5 (4:1). The prepared tablets were characterized for various quality control tests and in vitro drug release. Evaluation of drug release kinetics through model fitting suggested the Fickian mechanism of drug release, which was regulated by osmosis and diffusion as the predominant mechanism. Evaluation of mucoadhesion property using texture analyzer suggested good mucoadhesion potential of the developed osmotic systems. Solid state characterization using Fourier-transform infrared spectroscopy, differential scanning calorimetry and powder X-ray diffraction spectroscopy confirmed the absence of any physiochemical incompatibilities between drug and excipients. Scanning electron microscopy analysis showed the smooth surface appearance of the coated tablets with intact polymeric membrane without any fracture. In vivo pharmacokinetic studies in rabbits revealed 3.01-fold enhancement in the oral bioavailability vis-à-vis the marketed formulation (Vastarel MR®). These studies successfully demonstrate the bioavailability enhancement potential of the mucoadhesive elementary osmotic pumps as novel therapeutic systems for other drugs too.  相似文献   

3.
Abstract

In this study, a novel controlled release osmotic pump capsule consisting of pH-modulated solid dispersion for poorly soluble drug flurbiprofen (FP) was developed to improve the solubility and oral bioavailability of FP and to minimize the fluctuation of plasma concentration. The pH-modulated solid dispersion containing FP, Kollidon® 12 PF and Na2CO3 at a weight ratio of 1/4.5/0.02 was prepared using the solvent evaporation method. The osmotic pump capsule was assembled by semi-permeable capsule shell of cellulose acetate (CA) prepared by the perfusion method. Then, the solid dispersion, penetration enhancer, and suspending agents were tableted and filled into the capsule. Central composite design-response surface methodology was used to evaluate the influence of factors on the responses. A second-order polynomial model and a multiple linear model were fitted to correlation coefficient of drug release profile and ultimate cumulative release in 12?h, respectively. The actual response values were in good accordance with the predicted ones. The optimized formulation showed a complete drug delivery and zero-order release rate. Beagle dogs were used to be conducted in the pharmacokinetic study. The in vivo study indicated that the relative bioavailability of the novel osmotic pump system was 133.99% compared with the commercial preparation. The novel controlled delivery system with combination of pH-modulated solid dispersion and osmotic pump system is not only a promising strategy to improve the solubility and oral bioavailability of poorly soluble ionizable drugs but also an effective way to reduce dosing frequency and minimize the plasma fluctuation.  相似文献   

4.
Abstract

The combination of metformin hydrochloride (MTF) and glipizide (GLZ) is second-line medication for diabetes mellitus type 2 (DMT2). In the present study, elementary osmotic pump ( EOP) tablet is designed to deliver the combination of MTF and GLZ in a sustained and synchronized manner. By analyzing different variables of the formulation, sodium hydrogen carbonate is introduced as pH modifier to improve the release of GLZ, while ethyl cellulose acts as release retardant to reduce the burst release phase of MTF. A two-factor, three-level face-centered central composite design (FCCD) is applied to investigate the impact of different factors on drug release profile. Compared with conventional tablets, the EOP tablet demonstrates a controlled release behavior with relative bioavailability of 99.2% for MTF and 99.3% for GLZ. Data also shows EOP tablet is able to release MTF and GLZ in a synchronized and sustained manner both in vitro and in vivo.  相似文献   

5.
Novel core-shell dual-mesoporous silica nanoparticles (DMSN) were successfully prepared as a carrier in order to improve the dissolution of fenofibrate and obtain an oral highly bioavailable controlled-release drug delivery system using the osmotic pump technology. Fenofibrate was loaded into DMSN by an adsorption method. The solid state properties of fenofibrate in DMSN, before and after drug loading, were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption/desorption analysis (BET), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC). In vitro release tests showed that DMSN increased the dissolution rate of fenofibrate and produced zero-order release in push–pull osmotic pump tablets (OPT). The relative bioavailability of OPT was 186.9% in comparison with the commercial reference product. In summary, osmotic pump technology in combination with solid dispersion technology involving nanometer materials is a promising way for achieving the oral delivery of poorly water-soluble drugs.  相似文献   

6.
The objective of this study is to develop the monolithic osmotic pump tablet system (MOTS) containing isosorbide-5-mononitrate (5-ISMN), and to evaluate its in vitro and in vivo properties. The influences of tablet formulation variables, size and location of the delivery orifice, membrane variables, and pH value of the dissolution medium on 5-ISMN release from MOTS have been investigated. These results demonstrated that the tablet core played an important role in MOTS, and membrane variables could affect the 5-ISMN release rate. The optimal formulation of 5-ISMN MOTS was determined by uniform design. Furthermore, the dog pharmacokinetics and relative bioavailability of the test formulation (5-ISMN MOTS) have been compared with the reference formulation (Imdur: 60 mg/tablet, a sustained release, SR, tablet system) following an oral single dose of 60 mg given to each of six Beagle dogs. The mean drug fraction absorbed by the dog was calculated by the Wagner-Nelson technique. The results showed that drug concentration in plasma could be maintained more stable and longer after the administration of 5-ISMN MOTS compared with the matrix tablets of Imdur, and a level A "in vitro-in vivo correlation" was observed between the percentage released in vitro and percentage absorbed in vivo. It is concluded that 5-ISMN MOTS is more feasible for a long-acting preparation than 5-ISMN SR tablet system as once-a-day treatment, and it is very simple in preparation, and can release 5-ISMN at the rate of approximately zero order for the combination of hydroxypropylmethyl cellulose as retarder and NaCl as osmogent.  相似文献   

7.
The synchronous sustained-release of two drugs was desired urgently for patients needing combination therapy in long term. However, sophisticated technologies were used generally to realize the simultaneous delivery of two drugs especially those with different physico-chemical properties. The purpose of this study was to obtain the concurrent release of felodipine and metoprolol tartrate, two drugs with completely different solubilities, in a simple monolithic osmotic pump system (FMOP). Two types of blocking agents were used in monolithic osmotic pump tablets and the synchronous sustained-release of FMOP was acquired in vitro. The tablets were also administered to beagle dogs and the plasma levels of FMOP were determined by HPLC-MS/MS. The pharmacokinetic parameters were calculated using a non-compartmental model. Cmax of both felodipine and metoprolol from the osmotic pump tablets were lower, tmax and mean residence time of both felodipine and metoprolol from the osmotic pump tablets were longer significantly than those from immediate release tablets. These results verified prolonged release of felodipine and metoprolol tartrate from osmotic pump formulations. The similar absorption rate between felodipine and metoprolol in beagles was also obtained by this osmotic pump formulation. Therefore, it could be supposed that the accordant release of two drugs with completely different solubilities may be realized just by using monolithic osmotic pump technology.  相似文献   

8.
The objective of this study is to develop the monolithic osmotic pump tablet system (MOTS) containing isosorbide-5-mononitrate (5-ISMN), and to evaluate its in vitro and in vivo properties. The influences of tablet formulation variables, size and location of the delivery orifice, membrane variables, and pH value of the dissolution medium on 5-ISMN release from MOTS have been investigated. These results demonstrated that the tablet core played an important role in MOTS, and membrane variables could affect the 5-ISMN release rate. The optimal formulation of 5-ISMN MOTS was determined by uniform design. Furthermore, the dog pharmacokinetics and relative bioavailability of the test formulation (5-ISMN MOTS) have been compared with the reference formulation (Imdur®: 60 mg/tablet, a sustained release, SR, tablet system) following an oral single dose of 60 mg given to each of six Beagle dogs. The mean drug fraction absorbed by the dog was calculated by the Wagner–Nelson technique. The results showed that drug concentration in plasma could be maintained more stable and longer after the administration of 5-ISMN MOTS compared with the matrix tablets of Imdur®, and a level A “in vitro–in vivo correlation” was observed between the percentage released in vitro and percentage absorbed in vivo. It is concluded that 5-ISMN MOTS is more feasible for a long-acting preparation than 5-ISMN SR tablet system as once-a-day treatment, and it is very simple in preparation, and can release 5-ISMN at the rate of approximately zero order for the combination of hydroxypropylmethyl cellulose as retarder and NaCl as osmogent.  相似文献   

9.
The objective of this study was to design and evaluate azilsartan osmotic pump tablets. Preformulation properties of azilsartan were investigated for formulation design. Azilsartan osmotic pump tablets were prepared by incorporation of drug in the core and subsequent coating with cellulose acetate and polyethylene glycol 4000 as semi-permeable membrane, then drilled an orifice at the center of one side. The influence of different cores, compositions of semipermeable membrane and orifice diameter on azilsartan release were evaluated. The formulation of core tablet was optimized by orthogonal design and the release profiles of various formulations were evaluated by similarity factor (f2). The optimal formulation achieved to deliver azilsartan at an approximate zero-order up to 14?h. The pharmacokinetic study was performed in beagle dogs. The azilsartan osmotic pump tablets exhibited less fluctuation in blood concentration and higher bioavailability compared to immediate-release tablets. Moreover, there was a good correlation between the in vitro dissolution and in vivo absorption of the tablets. In summary, azilsartan osmotic pump tablets presented controlled release in vitro, high bioavailability in vivo and a good in vitro-in vivo correlation.  相似文献   

10.
Objective: The purpose of this work was to develop a controlled release of ziprasidone with no food effect by the osmotic release strategy.

Methods: The solution of ziprasidone and poloxamer188 (P188) with different weight ratios was spray-dried to form solid dispersion of ziprasidone (SD-ZIP). The SD-ZIP was characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray powder diffraction (X-RD) and solubility testing. The SD-ZIP osmotic pump tablets were prepared by wet granulation method. The effect of formulation variables on the release characteristic was investigated. The SD-ZIP osmotic pump tablets were administered to fasted and fed beagle dogs and their pharmacokinetics were compared to commercial formulation Zeldox® as a control.

Results: The results of DSC and X-RD indicated that ziprasidone resides in P188 with no crystalline changes. Solubility studies demonstrated that the solubility of SD-ZIP was substantially improved compared to ziprasidone and physical mixtures of ziprasidone and P188. The optimized formulation and drug release profiles of SD-ZIP osmotic pump tablets in different medium were obtained which showed typical osmotically controlled release and could fitted to zero-order kinetics with good linear correlation. Pharmacokinetic studies in beagle dogs showed ziprasidone with prolong actions and no food effect was achieved simultaneously in SD-ZIP osmotic pump tablet compared with Zeldox®.

Conclusion: The SD-ZIP osmotic pump tablet could be able to enhance the bioavailability in the fasted state and showed sustained release with prolonged actions.  相似文献   


11.
Purpose: The purpose of this study was to design a 24-hour controlled porosity osmotic pump system that utilizes polyvinyl pyrrolidone (PVP) as an osmotic-suspending/release retarding agent of drugs. Methods: Osmotic tablet cores containing various ratios of ketoprofen and PVP were prepared by wet granulation and initially spray coated with similar solution of cellulose acetate. A formulation containing ketoprofen and PVP at a ratio of 1:7 was selected for further studies. Results: The final formulation containing PVP K-30 in the tablet core augmented the release of ketoprofen (poorly water-soluble) up to 90 % over 24 hours much higher than either PVP K-25 or PVP K-90 and retarded the release of pseudoephedrine HCl (highly water-soluble) up to 18 hours. Conclusion: This study proposed the dual use of PVP in osmotic pump systems containing solids to modulate the release of either poorly or highly water-soluble drug.  相似文献   

12.
The aim of this study was to evaluate the monolithic osmotic tablet system (MOTS) containing a solid dispersion with the practically water-insoluble drug nifedipine in vitro and in vivo. In the drug release study in vitro, the release profiles of this system had almost zero-order kinetics. The influences of tablet formulation variables, sizes of the delivery orifice, membrane variables, and values of pH in the dissolution medium on nifedipine release from MOTS have been investigated. The results provided evidence that the tablet core played an important role in MOTS. While orifice sizes and membrane variables affected the nifedipine release rate, MOTS was independent of the dissolution medium. The appropriate orifice size was found to be in the range of 0.5-1.0 mm. The coating membrane incorporating hydrophilic polyethylene glycol (PEG) formed a porous structure. The human pharmacokinetics and relative bioavailability of MOTS containing nifedipine were compared with a commercial Adalat® osmotic tablet system containing an equivalent dose of nifedipine following an oral single dose of 30 mg given to each of 11 healthy volunteers in an open, randomized crossover study in vivo. The relative bioavailability for MOTS was 112%. There was no statistically significant difference in the pharmacokinetic parameters between two dosage forms. It is concluded that the monolithic osmotic tablet controlled release system is feasible for a long-acting preparation as a once-daily treatment.  相似文献   

13.
Abstract

The aim of this study was to evaluate the monolithic osmotic tablet system (MOTS) containing a solid dispersion with the practically water-insoluble drug nifedipine in vitro and in vivo. In the drug release study in vitro, the release profiles of this system had almost zero-order kinetics. The influences of tablet formulation variables, sizes of the delivery orifice, membrane variables, and values of pH in the dissolution medium on nifedipine release from MOTS have been investigated. The results provided evidence that the tablet core played an important role in MOTS. While orifice sizes and membrane variables affected the nifedipine release rate, MOTS was independent of the dissolution medium. The appropriate orifice size was found to be in the range of 0.5–1.0 mm. The coating membrane incorporating hydrophilic polyethylene glycol (PEG) formed a porous structure. The human pharmacokinetics and relative bioavailability of MOTS containing nifedipine were compared with a commercial Adalat® osmotic tablet system containing an equivalent dose of nifedipine following an oral single dose of 30 mg given to each of 11 healthy volunteers in an open, randomized crossover study in vivo. The relative bioavailability for MOTS was 112%. There was no statistically significant difference in the pharmacokinetic parameters between two dosage forms. It is concluded that the monolithic osmotic tablet controlled release system is feasible for a long-acting preparation as a once-daily treatment.  相似文献   

14.
A system that can deliver multi-drugs at a prolonged rate is very important to the treatment of various chronic diseases such as diabetes, asthma, and heart disease. Two controlled-release systems, which exhibited similar release profiles of metformin and glipizide, i.e., elementary osmotic pump tablets (EOP) and bilayer hydrophilic matrix tablet (BT), were designed. The effects of pH and hydrodynamic conditions on drug release from two formulations were investigated. It was found that both drug releases from EOP were not sensitive to dissolution media pH and hydrodynamics change, while the release of glipizide from BT was influenced by the stirring rate. Moreover, in vivo evaluation was performed, relative to the equivalent dose of conventional metformin tablet and glipizide tablet, by a three-crossover study in six Beagle dogs. Cumulative percent input in vivo was compared to in vitro release profiles. The linear correlations of metformin and glipizide between fraction absorbed in vivo and fraction dissolved in vitro were established for EOP—a true zero-order release formula, whereas only nonlinear correlations were obtained for BT. In conclusion, drug release from EOP was both independent of in vitro and in vivo conditions, where the best sustained release effect was achieved, whereas the in vitro dissolution test employed for BT needed to be further optimized to be biorelevant.  相似文献   

15.
A novel monolithic osmotic tablet composed of solid dispersion of water-insoluble 10-hydroxycamptothecin (HCPT) was prepared. The tablet core was made of a suspending agent, polyethylene oxide, an osmotic agent, sodium chloride, and a solid dispersion consisting of polyethylene glycol 6000 and HCPT. Optimized formulation was able to deliver HCPT at the constant rate of 1.21 mg/hour for 12 hours with cumulative release above 90% in vitro, independent of environmental media and stirring rate, and the release rate is co-controlled by osmotic pressure, suspending effect, and drug solubility in solid dispersion. The monolithic osmotic tablet containing solid dispersion has great potential in the controlled delivery of water-insoluble drugs.  相似文献   

16.
Preparation and evaluation of SEDDS and SMEDDS containing carvedilol   总被引:4,自引:0,他引:4  
A new self-emulsifying drug delivery system (SEDDS) and self-microemulsifying drug delivery system (SMEDDS) have been developed to increase the solubility, dissolution rate, and, ultimately, oral bioavailability of a poorly water soluble drug, carvedilol. Ternary phase diagrams were used to evaluate the self-emulsification and self-microemulsfication domains. The self-emulsification time following introduction into an aqueous medium under gentle agitation was evaluated. The minimum self-emulsification time was found at a Tween 80 content of 40%. The particle size distribution and ζ-potential were determined. Benzoic acid had a dual function, it improved the self-emulsification performance of SEDDS and SMEDDS in 0.1 N HCl and lead to a positively charged emulsion. The in vitro dissolution rate of carvedilol from SEDDS and SMEDDS was more than two-fold faster compared with that from tablets. The developed SEDDS formulations significantly improved the oral bioavailability of carvedilol significantly, and the relative oral bioavailability of SEDDS compared with commercially available tablets was 413%.  相似文献   

17.
Preparation and in vitro/in vivo evaluation of risperidone elementary osmotic pump (RIS-EOP) formulations were investigated. A method for the preparation of RIS-EOP tablets was developed by modulating RIS solubility with citric acid. The influence of osmotic agents and the compositions of semipermeable membrane on drug release profiles was evaluated. The formulation of RIS-EOP was optimized by orthogonal design. The in vitro release profile of the optimum formulation achieved to deliver RIS at an approximate zero-order up to 12?h. The pharmacokinetic profiles of RIS-EOP were evaluated compared with immediate release tablets in beagle dogs. The mean tmax and mean residence time of RIS-EOP for RIS and its active metabolite, 9-hydroxyrisperidone, were remarkably longer, compared with immediate release tablets. These results corroborated prolonged release of RIS from EOP formulations. Moreover, drug plasma levels with lower fluctuations could be achieved with RIS-EOP tablets. These results suggested that increasing drug solubility by adding or reacting with alkali/acid might be used for the preparation of EOP tablets of certain poorly water-soluble drugs.  相似文献   

18.
A system that can deliver multi-drugs at a prolonged rate is very important to the treatment of various chronic diseases such as diabetes, asthma, and heart disease. Two controlled-release systems, which exhibited similar release profiles of metformin and glipizide, i.e., elementary osmotic pump tablets (EOP) and bilayer hydrophilic matrix tablet (BT), were designed. The effects of pH and hydrodynamic conditions on drug release from two formulations were investigated. It was found that both drug releases from EOP were not sensitive to dissolution media pH and hydrodynamics change, while the release of glipizide from BT was influenced by the stirring rate. Moreover, in vivo evaluation was performed, relative to the equivalent dose of conventional metformin tablet and glipizide tablet, by a three-crossover study in six Beagle dogs. Cumulative percent input in vivo was compared to in vitro release profiles. The linear correlations of metformin and glipizide between fraction absorbed in vivo and fraction dissolved in vitro were established for EOP—a true zero-order release formula, whereas only nonlinear correlations were obtained for BT. In conclusion, drug release from EOP was both independent of in vitro and in vivo conditions, where the best sustained release effect was achieved, whereas the in vitro dissolution test employed for BT needed to be further optimized to be biorelevant.  相似文献   

19.
ABSTRACT

A new self-emulsifying drug delivery system (SEDDS) and self-microemulsifying drug delivery system (SMEDDS) have been developed to increase the solubility, dissolution rate, and, ultimately, oral bioavailability of a poorly water soluble drug, carvedilol. Ternary phase diagrams were used to evaluate the self-emulsification and self-microemulsfication domains. The self-emulsification time following introduction into an aqueous medium under gentle agitation was evaluated. The minimum self-emulsification time was found at a Tween 80 content of 40%. The particle size distribution and ζ-potential were determined. Benzoic acid had a dual function, it improved the self-emulsification performance of SEDDS and SMEDDS in 0.1 N HCl and lead to a positively charged emulsion. The in vitro dissolution rate of carvedilol from SEDDS and SMEDDS was more than two-fold faster compared with that from tablets. The developed SEDDS formulations significantly improved the oral bioavailability of carvedilol significantly, and the relative oral bioavailability of SEDDS compared with commercially available tablets was 413%.  相似文献   

20.
Poorly soluble glipizide was selected as the model drug to prepare osmotic pump tablets (OPT) with proper accessorial material after it was made an inclusion complex by kneading method in order to increase solubility. Polyethylene glycol 4000 (PEG4000) and cellulose acetate (CA) were selected as the coating materials, and acetone-water (95:5) co-solvent was employed as the coating medium. The effects of the osmotic promoting agent, diameter of the drug-releasing orifice, coating composition, and coat weight on the drug release profile were investigated. The drug release profile of the optimal formulation was compared with a commercialized push-pull osmotic tablet. The results indicated that glipizide-cyclodextrin inclusion complex OPT had excellent zero-order release characteristics in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号