首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The main focus of this study is to develop colon targeted drug delivery systems for metronidazole (MTZ). Tablets were prepared using various polysaccharides or indigenously developed graft copolymer of methacrylic acid with guar gum (GG) as a carrier. Various polysaccharides such as GG, xanthan gum, pectin, carrageenan, β-cyclodextrin (CD) or methacrylic acid-g-guar (MAA-g-GG) gum have been selected and evaluated. The prepared tablets were tested in vitro for their suitability as colon-specific drug delivery systems. To further improve the colon specificity, some selected tablet formulations were enteric coated with Eudragit-L 100 to give protection in an acidic environment. Drug release studies were performed in simulated gastric fluid (SGF) for 2 hr followed by simulated intestinal fluid (SIF) at pH 7.4. The dissolution data demonstrate that the rate of drug release is dependent upon the nature and concentration of polysaccharide/polymer used in the formulations. Uncoated tablets containing xanthan gum or mixture of xanthan gum with graft copolymer showed 30-40% drug release during the initial 4-5 hr, whereas for tablets containing GG with the graft copolymer, it was 70%. After enteric coating, the release was drastically reduced to 18-24%. The other polysaccharides were unable to protect drug release under similar conditions. Preparations with xanthan gum as a matrix showed the time-dependent release behavior. Further, in vitro release was performed in the dissolution media with rat caecal contents. Results indicated an enhanced release when compared to formulations studied in dissolution media without rat caecal contents, because of microbial degradation or polymer solubilization. The nature of drug transport was found to be non-Fickian in case of uncoated formulations, whereas for the coated formulations, it was found to be super-Case-II. Statistical analyses of release data indicated that MTZ release is significantly affected by the nature of the polysaccharide used and enteric coating of the tablet. Differential scanning calorimetry indicated the presence of crystalline nature of drug in the formulations.  相似文献   

2.
The objective of this study is to develop, in vitro and in vivo evaluation of novel approaches for controlled release of paroxetine hydrochloride hemihydrate (PHH) in comparison to patented formulation PAXIL CR® tablets of GlaxoSmithKline (Geomatrix? technology). In one of the approaches, hydrophilic core matrix tablets containing 85% of the dose were prepared and further coated with methacrylic acid copolymer to delay the release. An immediate release coating of 15% was given as top coat. The tablets were further optionally coated using ethyl cellulose. In the second approach, hydrophobic matrix core tablets containing metharylic acid copolymer were prepared. In the third approach, PHH was granulated with enteric polymer and further hydrophobic matrix core tablets were prepared. The effect of polymer concentration, level of enteric coating on drug release was evaluated by in vitro dissolution study by varying dissolution apparatus and the rotation speeds. It was found that increase in concentration of high viscosity hydroxypropylmethylcellulose (HPMC) resulted in reduction of the release rate. The drug release was observed to be dependent on the level of enteric coating and ethyl cellulose coating, being slower at increased coating. The release mechanism of PHH followed zero-order shifting to dissolution dependent by the increase of HPMC content. The formulation was stable without change in drug release rate. In vivo study in human volunteers confirmed the similarity between test and innovator formulations. In conclusion, HPMC-based matrix tablets, which were further coated using methacrylic acid copolymer, were found to be suitable for the formulation of single layer-controlled release PHH.  相似文献   

3.
Matrix tablets were prepared using xanthan gum (XG) and guar gum (GG) in varying proportions, and the suitability of the prepared tablets was evaluated for colon specific drug delivery. Indomethacin was used as a model drug. The ability of the prepared matrices to retard drug release in the upper gastrointestinal tract (GIT) and to undergo enzymatic hydrolysis by the colonic bacteria was evaluated. For this, drug release studies were carried out in the presence of rat cecal content. Further cecal content of rats with induced enzymatic activity were used. To ascertain the role of bacterial flora in carrying out the hydrolysis of the tablet, cecal content of rats treated with antibiotics were used in the dissolution media. Presence of XG in combination with GG in the tablets could retard drug release in the conditions of the upper GIT. However, the presence of GG and starch made these matrices microbially degradable. Guar gum alone as a drug release-retarding excipient in the matrices does not achieve the desired retardation. Presence of XG in the tablets not only retards the initial drug release from the tablets, but due to high swelling, makes them more vulnerable to digestion by the microbial enzymes in the colon.  相似文献   

4.
Abstract

The oral absorption of theophylline from two sustained release formulations, formulated using xanthan gum or sodium alginate, has been investigated in the beagle dog. A commercial product was used for comparison. Dissolution tests and an in vivo dog study both indicated that the xanthan gum tablet released drug at a constant rate and performed as a pH independent zero-order controlled release formulation. With the alginate tablet, faster dissolution rates were observed when acid medium was present. The pH dependent release behavior of the alginate formulation is explained. Drug release mechanisms which are influenced by the gel behaviors in these two polymers are discussed. The relative oral bioavailabilities of these two formulations in dog were 74–84% compared to immediately releasing capsules, and three-fold that of the commercial product with an equivalent dose.  相似文献   

5.
ABSTRACT

Sustained-release tablets of propranolol HCl were prepared by direct compression using chitosan and xanthan gum as matrix materials. The effective prolongation of drug release in acidic environment was achieved for matrix containing chitosan together with xanthan gum which prolonged the drug release more extensive than that containing single polymer. Increasing lactose into matrix could adjust the drug release characteristic by enhancing the drug released. Component containing chitosan and xanthan gum at ratio 1:1 and lactose 75% w/w was selected for preparing the layered matrix by tabletting. Increasing the amount of matrix in barrier or in middle layer resulted in prolongation of drug release. From the investigation of drug release from one planar surface, the lag time for drug release through barrier layer was apparently longer as the amount of barrier was enhanced. Least square fitting the experimental dissolution data to the mathematical expressions (power law, first order, Higuchi's and zero order) was performed to study the drug release mechanism. Layering with polymeric matrix could prolong the drug release and could shift the release pattern approach to zero order. The drug release from chitosan-xanthan gum three-layer tablet was pH dependent due to the difference in charge density in different environmental pH. FT-IR and DSC studies exhibited the charge interaction between of NH3+ of chitosan molecule and COO? of acetate or pyruvate groups of xanthan gum molecule. The SEM images revealed the formation of the loose membranous but porous film that was due to the gel layer formed by the polymer relaxation upon absorption of dissolution medium. The decreased rate of polymer dissolution resulting from the decreased rate of solvent penetration was accompanied by a decrease in drug diffusion due to ionic interaction between chitosan and xanthan gum. This was suggested that the utilization of chitosan and xanthan gum could give rise to layered matrix tablet exhibiting sustained drug release.  相似文献   

6.
Sustained-release tablets of propranolol HCl were prepared by direct compression using chitosan and xanthan gum as matrix materials. The effective prolongation of drug release in acidic environment was achieved for matrix containing chitosan together with xanthan gum which prolonged the drug release more extensive than that containing single polymer. Increasing lactose into matrix could adjust the drug release characteristic by enhancing the drug released. Component containing chitosan and xanthan gum at ratio 1:1 and lactose 75% w/w was selected for preparing the layered matrix by tabletting. Increasing the amount of matrix in barrier or in middle layer resulted in prolongation of drug release. From the investigation of drug release from one planar surface, the lag time for drug release through barrier layer was apparently longer as the amount of barrier was enhanced. Least square fitting the experimental dissolution data to the mathematical expressions (power law, first order, Higuchi's and zero order) was performed to study the drug release mechanism. Layering with polymeric matrix could prolong the drug release and could shift the release pattern approach to zero order. The drug release from chitosan-xanthan gum three-layer tablet was pH dependent due to the difference in charge density in different environmental pH. FT-IR and DSC studies exhibited the charge interaction between of NH3+ of chitosan molecule and COO- of acetate or pyruvate groups of xanthan gum molecule. The SEM images revealed the formation of the loose membranous but porous film that was due to the gel layer formed by the polymer relaxation upon absorption of dissolution medium. The decreased rate of polymer dissolution resulting from the decreased rate of solvent penetration was accompanied by a decrease in drug diffusion due to ionic interaction between chitosan and xanthan gum. This was suggested that the utilization of chitosan and xanthan gum could give rise to layered matrix tablet exhibiting sustained drug release.  相似文献   

7.
Acetaminophen (paracetamol) is available in a wide range of oral formulations designed to meet the needs of the population across the age-spectrum, but for people with impaired swallowing, i.e. dysphagia, both solid and liquid medications can be difficult to swallow without modification. The effect of a commercial polysaccharide thickener, designed to be added to fluids to promote safe swallowing by dysphagic patients, on rheology and acetaminophen dissolution was tested using crushed immediate-release tablets in water, effervescent tablets in water, elixir and suspension. The inclusion of the thickener, comprised of xanthan gum and maltodextrin, had a considerable impact on dissolution; acetaminophen release from modified medications reached 12–50% in 30?min, which did not reflect the pharmacopeia specification for immediate release preparations. Flow curves reflect the high zero-shear viscosity and the apparent yield stress of the thickened products. The weak gel nature, in combination with high G' values compared to G'' (viscoelasticity) and high apparent yield stress, impact drug release. The restriction on drug release from these formulations is not influenced by the theoretical state of the drug (dissolved or dispersed), and the approach typically used in clinical practice (mixing crushed tablets into pre-prepared thickened fluid) cannot be improved by altering the order of incorporation or mixing method.  相似文献   

8.
Abstract

Floating tablets of pregabalin were prepared using different concentrations of the gums (xanthan gum and guar gum), Carbopol 974P NF and HPMC K100. Optimized formulations were studied for physical tests, floating time, swelling behavior, in vitro release studies and stability studies. In vitro drug release was higher for tablet batches containing guar and xanthan gum as compared to the batches containing Carbopol 974P NF. Tablet batches were subjected to stability studies and evaluated by different parameters (drug release, drug content, FTIR and DSC studies). The optimized tablet batch was selected for in vivo pharmacodynamic studies (PTZ induced seizures). The results obtained showed that the onset of jerks and clonus were delayed and extensor phase was abolished with time in treated groups. A significant difference (p?>?0.05) was observed in control and treated group behavior indicating an excellent activity of the formulation for a longer period (>12?h).  相似文献   

9.
The objective of this study was to evaluate xanthan gum as a matrix former for the preparation of sustained release tablets. Preliminary experiments indicated that a fine particle sue of xanthan gum produced the slowest and most reproducible release profiles. Based on single surface experiments and tablet erosion studies, it was concluded that release of a soluble drug (chlorpheniramine maleate) and an insoluble drug (theophylline) from tablets containing low concentraions of xanthan gum was mainly via diffusion and erosion, respectively. Drug release from tablets containing xanthan gum was slightly faster in acidic media due to more rapid initial surface erosion than at higher pH. After hydration of the gum, drug release was essentially pH-independent. The amount released was directly proportional to the loading dose of drug and inversely proportional to gum concentration in tablets. Release profiles of chlorpheniramine maleate and theophylline remained unchanged after three months storage of the tablets at 40°C/80% RH and 40°C. Model tablets containing 5% xanthan gum exhibited release profiles similar to tablets containing 15% hydroxypropyl methylcellulose.  相似文献   

10.
Pentoxifylline-controlled release tablets were prepared using xanthan gum. The effects of polymer concentration, rotation speed, ionic strength, and pH of the dissolution medium on the release of the water-soluble pentoxifylline were studied. The release rate decreased with increasing polymer concentration in the tablet, which was reflected in the increase in the mean dissolution time. A higher rotation speed and increased ionic strength of the dissolution medium resulted in a higher rate of drug release of xanthan-based tablets. A higher release rate of pentoxifylline was also observed using acidic dissolution medium.  相似文献   

11.
Xanthan Gum and Alginate Based Controlled Release Theophylline Formulations   总被引:1,自引:0,他引:1  
The oral absorption of theophylline from two sustained release formulations, formulated using xanthan gum or sodium alginate, has been investigated in the beagle dog. A commercial product was used for comparison. Dissolution tests and an in vivo dog study both indicated that the xanthan gum tablet released drug at a constant rate and performed as a pH independent zero-order controlled release formulation. With the alginate tablet, faster dissolution rates were observed when acid medium was present. The pH dependent release behavior of the alginate formulation is explained. Drug release mechanisms which are influenced by the gel behaviors in these two polymers are discussed. The relative oral bioavailabilities of these two formulations in dog were 74-84% compared to immediately releasing capsules, and three-fold that of the commercial product with an equivalent dose.  相似文献   

12.
Abstract

The preparation of sustained release dosage forms of Carbamazepine (anti-epileptic drug characterized by a very low water solubility and by a short half life on chronique dosing) was carried out.

These formulations were obtained in two different steps:

a) modified release granules were prepared by the loading of cross-linked sodium carboxymethylcellulose (swellable polymer), with the drug and an enteric polymer. Cellulose acetate phthalate, methacrylic acid – methacrylic acid methyl ester copolymer (usually employed as enteric coating agents) and cellulose acetate trimellitate (a new enteric polymer) were used in different weight ratios.

b) some sustained release dosage forms were prepared tabletting physical mixtures of the modified release granules with different weight ratios of hydroxypropylmethylcellulose.

In vitro dissolution tests of modified release granules in gastric fluid (USP XXI) showed a modulation of the drug release, while in intestinal fluid (USP XXI) a quick drug dissolution was observed.

In vitro dissolution tests of sustained release dosage forms, performed varying during the test, the pH of the dissolution medium, (hydrochloric acid pH 1 from 0 to 2 hours and phosphate buffer pH 6.8 from 2 to 18 hours) showed that the determining factors in the controlling release of the drug are: the type and amount of enteric polymer constituting the granules and the amount of hydroxy-propylmethylcellulose mixed with them.  相似文献   

13.
Abstract

Cissus root gum was processed and evaluated as a binder in lactose-based tablets each containing 100 mg of sodium salicylate as the active ingredient. Acacia binder was used as basis for comparison. Tablet hardness, friability, disintegration time and dissolution rate were the parameters investigated. The cissus gum gave hard and non-friable tablets at 1 - 3% w/w concentration of the tablet formula. Tablets containing above 2% w/w of the cissus gum gave high disintegration time values and the pattern of dissolution of the incorporated drug suggests that the gum may be useful in prolonged release tablet formulations. No significant changes in the tablet properties was observed after storage at 30°C for 16 weeks.  相似文献   

14.
The preparation of sustained release dosage forms of Carbamazepine (anti-epileptic drug characterized by a very low water solubility and by a short half life on chronique dosing) was carried out.

These formulations were obtained in two different steps:

a) modified release granules were prepared by the loading of cross-linked sodium carboxymethylcellulose (swellable polymer), with the drug and an enteric polymer. Cellulose acetate phthalate, methacrylic acid - methacrylic acid methyl ester copolymer (usually employed as enteric coating agents) and cellulose acetate trimellitate (a new enteric polymer) were used in different weight ratios.

b) some sustained release dosage forms were prepared tabletting physical mixtures of the modified release granules with different weight ratios of hydroxypropylmethylcellulose.

In vitro dissolution tests of modified release granules in gastric fluid (USP XXI) showed a modulation of the drug release, while in intestinal fluid (USP XXI) a quick drug dissolution was observed.

In vitro dissolution tests of sustained release dosage forms, performed varying during the test, the pH of the dissolution medium, (hydrochloric acid pH 1 from 0 to 2 hours and phosphate buffer pH 6.8 from 2 to 18 hours) showed that the determining factors in the controlling release of the drug are: the type and amount of enteric polymer constituting the granules and the amount of hydroxy-propylmethylcellulose mixed with them.  相似文献   

15.
The present study was performed to evaluate the possibility of using modified xanthan films as a matrix system for transdermal delivery of atenolol (ATL), which is an antihypertensive drug. Acrylamide was grafted onto xanthan gum (XG) by free radical polymerization using ceric ion as an initiator. Fourier transform infrared spectroscopy and differential scanning calorimetry indicated the formation of the graft copolymer. The obtained graft copolymer was loaded with ATL and films were fabricated by solution casting method for transdermal application. Various formulations were prepared by varying the grafting ratio, drug loading, and different penetration enhancers. The formulations prepared were characterized for weight, thickness uniformity, water vapor transmission rate, and uniformity in drug content of the matrix. All the thin films were slightly opaque, smooth, flexible, and permeable to water vapor, indicating their permeability characteristics suitable for transdermal studies. Fourier transform infrared spectroscopy and differential scanning calorimetry studies indicated no significant interactions between drug and polymer. Drug is distributed uniformly in the matrix but showed a slight amorphous nature. Drug-loaded films were analyzed by X-ray diffraction to understand the drug polymorphism inside the films. Scanning electron microscopic studies of the placebo and drug-loaded films demonstrated a remarkable change in their surface morphology. The skin irritation tests were performed in mice and these results suggested that both placebo and drug-loaded films produced negligible erythema and edema compared to formalin (0.8% v/v) as the standard irritant. The in vitro drug release studies were performed in phosphate buffer saline using a Keshary-Chien diffusion cell. Different formulations were prepared and variations in drug release profiles were observed. Release data were analyzed by using the Ritger and Peppas equation to understand the mechanism of drug release as well as the estimation of n values, which ranged between 0.41 and 0.53, suggesting a Fickian diffusion trend.  相似文献   

16.
ABSTRACT

The present study was performed to evaluate the possibility of using modified xanthan films as a matrix system for transdermal delivery of atenolol (ATL), which is an antihypertensive drug. Acrylamide was grafted onto xanthan gum (XG) by free radical polymerization using ceric ion as an initiator. Fourier transform infrared spectroscopy and differential scanning calorimetry indicated the formation of the graft copolymer. The obtained graft copolymer was loaded with ATL and films were fabricated by solution casting method for transdermal application. Various formulations were prepared by varying the grafting ratio, drug loading, and different penetration enhancers. The formulations prepared were characterized for weight, thickness uniformity, water vapor transmission rate, and uniformity in drug content of the matrix. All the thin films were slightly opaque, smooth, flexible, and permeable to water vapor, indicating their permeability characteristics suitable for transdermal studies. Fourier transform infrared spectroscopy and differential scanning calorimetry studies indicated no significant interactions between drug and polymer. Drug is distributed uniformly in the matrix but showed a slight amorphous nature. Drug-loaded films were analyzed by X-ray diffraction to understand the drug polymorphism inside the films. Scanning electron microscopic studies of the placebo and drug-loaded films demonstrated a remarkable change in their surface morphology. The skin irritation tests were performed in mice and these results suggested that both placebo and drug-loaded films produced negligible erythema and edema compared to formalin (0.8% v/v) as the standard irritant. The in vitro drug release studies were performed in phosphate buffer saline using a Keshary-Chien diffusion cell. Different formulations were prepared and variations in drug release profiles were observed. Release data were analyzed by using the Ritger and Peppas equation to understand the mechanism of drug release as well as the estimation of n values, which ranged between 0.41 and 0.53, suggesting a Fickian diffusion trend.  相似文献   

17.
Abstract

The objective of this work was to use hot-melt extrusion (HME) technology to improve the physiochemical properties of lansoprazole (LNS) to prepare stable enteric coated LNS tablets. For the extrusion process, we chose Kollidon® 12?PF (K12) polymeric matrix. Lutrol® F 68 was selected as the plasticizer and magnesium oxide (MgO) as the alkalizer. With or without the alkalizer, LNS at 10% drug load was extruded with K12 and F68. LNS changed to the amorphous phase and showed better release compared to that of the pure crystalline drug. Inclusion of MgO improved LNS extrudability and release and resulted in over 80% drug release in the buffer stage. Hot-melt extruded LNS was physically and chemically stable after 12 months of storage. Both formulations were studied for compatibility with Eudragit® L100-55. The optimized formulation was compressed into a tablet followed by coating process utilizing a pan coater using L100-55 as an enteric coating polymer. In a two-step dissolution study, the release profile of the enteric coated LNS tablets in the acidic stage was less than 10% of the LNS, while that in the buffer stage was more than 80%. Drug content analysis revealed the LNS content to be 97%, indicating the chemical stability of the enteric coated tablet after storage for six months. HME, which has not been previously used for LNS, is a valuable technique to reduce processing time in the manufacture of enteric coated formulations of an acid-sensitive active pharmaceutical ingredient as compared to the existing methods.  相似文献   

18.
The objective of this study was to evaluate the effect of diluents and wax level on tablet integrity during heat treatment and dissolution for sustained-release formulations and the resultant effect on drug release. Dibasic calcium phosphate dihydrate (DCPD), microcrystalline cellulose (MCC), and lactose were evaluated for their effect on tablet integrity during drug dissolution and heat treatment in wax matrix formulations. A newly developed direct compression diluent, dibasic calcium phosphate anhydrous (DCPA), was also evaluated. Compritol® 888 ATO was used as the wax matrix material, with phenylpropanolamine hydrochloride (PPA) as a model drug. Tablets were made by direct compression and then subjected to heat treatment at 80°C for 30 min. The results showed that MCC, lactose, and DCPA could maintain tablets intact during heat treatment above the melting point of wax (70°C-75°C). However, DCPD tablets showed wax egress during the treatment. MCC tablets swelled and cracked during drug dissolution and resulted in quick release. DCPD and lactose tablets remained intact during dissolution and gave slower release than MCC tablets. DCPA tablets without heat treatment disintegrated very quickly and showed immediate release. In contrast, heat-treated DCPA tablets remained intact through the 24-hr dissolution test and only released about 80% PPA at 6 hr. In the investigation of wax level, DCPD was used as the diluent. The drug release rate decreased as the wax content increased from 15% to 81.25%. The dissolution data were best described by the Higuchi square-root-of-time model. Diluents showed various effects during heat treatment and drug dissolution. The integrity of the tablets was related to the drug release rate. Heat treatment retarded drug release if there was no wax egress.  相似文献   

19.
Compressed tablets of ticlopidine hydrochloride were coated with three aqueous film coating formulations and aged under 95% relative humidity at 23° and 37°. The in vitro dissolution of the drug from tablets coated with the formulation containing polymethacrylic acid esters before aging was slower than the tablets coated with the formulations containing hydroxypropyl methylcellulose or ethylcellulose dispersion. On aging, the in vitro drug dissolution of the coated and uncoated tablets decreased and the decrease depended on the film forming excipient in the coating formulation and the temperature of aging. The tablets coated with the formulation containing polymethacrylic acid esters dissolved very slowly after aging. Higher moisture contents of the tablets after aging under 95% relative humidity at 23° compared to 37° resulted in a consistently lower tablet crushing strength. The tablets coated with the formulation containing 10% hydroxypropy1 methylcellulose showed a smaller decrease in the tablet crushing strength on aging compared to the other two formulations.  相似文献   

20.
Abstract

To establish en in vitro test method that can predict the drug release and dissolution behaviour of vaginal bioadhesive controlled release tablets, a system was developed and its appropriateness to the in situ conditions was examined. For this purpose, the dissolution rates of vaginal bioadhesive tablets were measured by three different methods. These were, USP dissolution apparatus two and a new vaginal dissolution tester (NVDT) which was developed by us with some modification of the vaginal tablet desentegration apparatus of BP 1988 and, testing in cow vaginas in situ. Four different bioadhesive tablet formulations were used being composed of the drug and the anionic polymer, polyacrylic acid (PAA) and the nonionic polymers, hydroxypropylmethyl cellulose (HPMC) and ethyIcellulose (EC). The release profiles of the in vitro and in situ methods were investigated and evaluated kinetically.

It was found that NVDT could be used to investigate the drug release from vaginal tablets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号