首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the possibility of preparing solid dispersions of the poorly soluble budesonide by supercritical fluid (SCF) technique, using poly (ethylene oxide) (PEO) as a hydrophilic carrier. The budesonide-PEO solid dispersions were prepared, using supercritical carbon dioxide (SC CO2) as the processing medium, and characterized by scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), solubility test and dissolution test in order to understand the influence of the SCF process on the physical status of the drug. The endothermic peak of budesonide in the SCF-treated mixtures was significantly reduced, indicating that budesonide was in amorphous form inside the carrier system. This was further confirmed by SEM and PXRD studies. The enhanced dissolution rates of budesonide were observed from SCF-treated budesonide-PEO mixtures. The amorphous characteristic of the budesonide, the better mixing of drug and PEO powders in the presence of SC CO2, together with the improved wettability of the drug in PEO, produced a remarkable enhancement of the in vitro drug dissolution rate. Thus, budesonide-PEO solid dispersions with enhanced dissolution rate can be prepared using organic solvent-free SCF process.  相似文献   

2.
Objective: The aim of this study was to improve the oral bioavailability of spironolactone (SP).

Method: SP was adsorbed on the fumed silica using supercritical CO2 (scCO2) technology and further compressed into tablets. The morphology was observed by scanning electron microscopy (SEM), and the crystalline form was investigated by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). The dissolution test was performed in water, 0.1?M HCl solution, pH 4.5 acetate buffers and pH 6.8 phosphate buffers using the paddle method. The pharmacokinetics was undertaken in six dogs in a crossover fashion.

Results: SP was successfully prepared into tablets and presented in amorphous state. SP-silica scCO2 tablets displayed higher dissolution profiles than SP-silica physical mixtures tablets in different media. The AUC0–t and Cmax of SP-silica supercritical CO2 was 1.61- and 1.52-fold greater than those of SP-silica physical mixtures (p?Conclusion: It is a promising method in improving dissolution and bioavailability by adsorbing SP, a poorly soluble drug, on the fumed silica using rapid expansion of supercritical solutions.  相似文献   

3.
Thennomicroscopy and differential scanning calorimetry were employed to characterize solid binary systems prepared with oxodipine and PEG 6000, 2-hydroxypropyl-β-cyclodextrin or mannitol. DSC curves did not allow to diferentiate physical mixtures from solid dispersions. Thennomicroscopy revealed the interactions that can be produced between drug and each carrier, due to heat contribution, when the physical mixtures were observed; also this thermal technique permited us to ascertain the composition of particles that constitute the solid dispersions. Dissolution studies showed that the amelioration obtained in oxodipine dissolution from physical mixtures was due to the dessagregant action of the carriers, which obtained an increase of the drug surface in contact with the dissolution medium. The proportions and carrier nature influence the oxodipine dissolution, fundamentally from solid dispersions, where the interaction drug/carrier is stronger than in physical mixtures.  相似文献   

4.
Triamterene-urea solid dispersions of varying weight fractions were elaborated by the melting carrier method and their dissolution profiles compared with the pure drug and physical mixtures. The dissolution rates of triamterene from solid dispersions were faster than the pure drug and physical mixtures.

Solubility studies revealed a linear increase in the solubility of the triamterene with the increase of urea concentration.

The intrinsic dissolution rates, determined by the rotating disc method, showed linear dissolution profiles in spite of that the scanning electron microscopy examination revealed that the surfaces do not maintain constant during the dissolution process.

Aging of the different preparations for one year at room temperature does not induced significant changes in their dissolution profiles.  相似文献   

5.
Enhanced dissolution of poorly soluble active pharmaceutical ingredients (APIs) in amorphous solid dispersions often diminishes during storage due to moisture-induced re-crystallization. This study aims to investigate the influence of moisture protection on solid-state stability and dissolution profiles of melt-extruded fenofibrate (FF) and ketoconazole (KC) solid dispersions. Samples were kept in open, closed and Activ-vials(?) to control the moisture uptake under accelerated conditions. During 13-week storage, changes in API crystallinity were quantified using powder X-ray diffraction (PXRD) (Rietveld analysis) and high sensitivity differential scanning calorimetry (HSDSC) and compared with any change in dissolution profiles. Trace crystallinity was observed by Raman microscopy, which otherwise was undetected by PXRD and HSDSC. Results showed that while moisture protection was ineffective in preventing the re-crystallization of amorphous FF, KC remained X-ray amorphous despite 5% moisture uptake. Regardless of the degree of crystallinity increase in FF, the enhanced dissolution properties were similarly diminished. Moisture uptake above 10% in KC samples also led to re-crystallization and significant decrease in dissolution rates. In conclusion, eliminating moisture sorption may not be sufficient in ensuring the stability of solid dispersions. Analytical quantification of API crystallinity is crucial in detecting subtle increase in crystallinity that can diminish the enhanced dissolution properties of solid dispersions.  相似文献   

6.
The amorphous solid dispersions of telmisartan salts were prepared by cogrinding, in presence of alkalizers and polyvinylpyrrolidone (PVPk30). Five alkalizers in this study were MgO, Na2CO3, K2CO3, NaHCO3 and meglumine. In soft mode using a roll mill, the drug could not form salt with MgO or NaHCO3, whereas partial drug had been transformed into salt with carbonates or meglumine. Under cogrinding, the organic base meglumine was easier to react with telmisartan than other two carbonates. For getting good dissolution performance, the drug had to be transformed into salt completely. A high intensity oscillating mill was applied for producing telmisartan meglumine salt. Multi-instrumental characterizations attested the formation of amorphous salt by high mechanical process, involving dissolution test, fourier transform infrared spectroscopy and powder X-ray diffractometry. It was evident that solid dispersions of telmisartan meglumine salt significantly increased the drug dissolution rate in intestinal fluid.  相似文献   

7.
Triamterene-urea solid dispersions of varying weight fractions were elaborated by the melting carrier method and their dissolution profiles compared with the pure drug and physical mixtures. The dissolution rates of triamterene from solid dispersions were faster than the pure drug and physical mixtures.

Solubility studies revealed a linear increase in the solubility of the triamterene with the increase of urea concentration.

The intrinsic dissolution rates, determined by the rotating disc method, showed linear dissolution profiles in spite of that the scanning electron microscopy examination revealed that the surfaces do not maintain constant during the dissolution process.

Aging of the different preparations for one year at room temperature does not induced significant changes in their dissolution profiles.  相似文献   

8.
Enhanced dissolution of poorly soluble active pharmaceutical ingredients (APIs) in amorphous solid dispersions often diminishes during storage due to moisture-induced re-crystallization. This study aims to investigate the influence of moisture protection on solid-state stability and dissolution profiles of melt-extruded fenofibrate (FF) and ketoconazole (KC) solid dispersions. Samples were kept in open, closed and Activ-vials® to control the moisture uptake under accelerated conditions. During 13-week storage, changes in API crystallinity were quantified using powder X-ray diffraction (PXRD) (Rietveld analysis) and high sensitivity differential scanning calorimetry (HSDSC) and compared with any change in dissolution profiles. Trace crystallinity was observed by Raman microscopy, which otherwise was undetected by PXRD and HSDSC. Results showed that while moisture protection was ineffective in preventing the re-crystallization of amorphous FF, KC remained X-ray amorphous despite 5% moisture uptake. Regardless of the degree of crystallinity increase in FF, the enhanced dissolution properties were similarly diminished. Moisture uptake above 10% in KC samples also led to re-crystallization and significant decrease in dissolution rates. In conclusion, eliminating moisture sorption may not be sufficient in ensuring the stability of solid dispersions. Analytical quantification of API crystallinity is crucial in detecting subtle increase in crystallinity that can diminish the enhanced dissolution properties of solid dispersions.  相似文献   

9.
ABSTRACT

Freeze-drying (FD) and solvent evaporation (SE) were used to prepare solid dispersions (SDs) of meloxicam (MX) in polyvinylpyrrolidone K-30 (PVP). The SDs were prepared at different ratios, namely 1:1, 1:3, and 1:5 MX:PVP weight ratio. Differential scanning calorimetry (DSC), infrared absorption spectroscopy (IR), and x-ray powder diffractometry (XPD) were utilized to characterize the physicochemical properties of the SDs. Meloxicam (MX) in the solid dispersions appeared with less crystallinity form and was present in a complete amorphous form at higher PVP ratio. Dissolution rates of MX as a pure drug, physical mixtures (PMs), and SDs indicated a marked increase of the dissolution rate of MX in presence of PVP. The increase in the dissolution rate was dependent on the ratio of PVP and the method of preparation. In addition, the permeability of the drug through standard cellophane membrane and hairless mouse skin was also evaluated. The permeation rate of MX was significantly increased in the case of SDs and was dependent on the ratio of PVP. The results were primarily due to increase wettability, the solubilization of the drug by the carrier, and formation of MX amorphous form.  相似文献   

10.
The basic objectives of this study were to prepare and characterize solid dispersions of poorly soluble drug spironolactone (SP) using gelucire carriers by spray-drying technique. The properties of the microparticles produced were studied by differential scanning calorimetry (DSC), scanning electron microscopy, saturation solubility, encapsulation efficiency, and dissolution studies. The absence of SP peaks in DSC profiles of microparticles suggests the transformation of crystalline SP into an amorphous form. The in vitro dissolution test showed a significant increase in the dissolution rate of microparticles as compared with pure SP and physical mixtures (PMs) of drug with gelucire carriers. Therefore, the dissolution rate of poorly water-soluble drug SP can be significantly enhanced by the preparation of solid dispersion using spray-drying technique.  相似文献   

11.
ABSTRACT

The purpose of our study was to formulate and evaluate bicalutamide (BL) solid dispersions (SD). The physicochemical properties were evaluated by differential scanning calorimetry (DSC), Fourier-Transform infrared (FT-IR) spectroscopy, Powder X-ray diffractometry (PXRD), dissolution studies, and stability studies. The dissolution studies demonstrated that the dissolution of BL from BL-SD increased with an increase in carrier content (PVP K30). X-ray assays and DSC results both confirmed the amorphous state of BL in BL-SD. Stability studies conducted after 6 months showed that BL exhibited excellent stability in the solid dispersion of PVP K30 (1:5).  相似文献   

12.
Freeze-drying (FD) and solvent evaporation (SE) were used to prepare solid dispersions (SDs) of meloxicam (MX) in polyvinylpyrrolidone K-30 (PVP). The SDs were prepared at different ratios, namely 1:1, 1:3, and 1:5 MX:PVP weight ratio. Differential scanning calorimetry (DSC), infrared absorption spectroscopy (IR), and x-ray powder diffractometry (XPD) were utilized to characterize the physicochemical properties of the SDs. Meloxicam (MX) in the solid dispersions appeared with less crystallinity form and was present in a complete amorphous form at higher PVP ratio. Dissolution rates of MX as a pure drug, physical mixtures (PMs), and SDs indicated a marked increase of the dissolution rate of MX in presence of PVP. The increase in the dissolution rate was dependent on the ratio of PVP and the method of preparation. In addition, the permeability of the drug through standard cellophane membrane and hairless mouse skin was also evaluated. The permeation rate of MX was significantly increased in the case of SDs and was dependent on the ratio of PVP. The results were primarily due to increase wettability, the solubilization of the drug by the carrier, and formation of MX amorphous form.  相似文献   

13.
Poor water solubility of new chemical entities (NCEs) is one of the major challenges the pharmaceutical industry currently faces. The purpose of this study was to investigate the feasibility of freeze-drying as an alternative technique to spray-drying to produce solid dispersions of poorly water-soluble drugs. Also investigated was the use of aqueous solvent mixtures in place of pure solvent for the production of solid dispersions. Aqueous solvent systems would reduce the environmental impact of pure organic solvent systems. Spray-dried and freeze-dried hydrocortisone/polyvinyl pyrrolidone solid dispersions exhibited differences in dissolution behavior. Freeze-dried dispersions exhibited faster dissolution rates than the corresponding spray-dried dispersions. Spray-dried systems prepared using both solvent systems (20% v/v and 96% v/v ethanol) displayed similar dissolution performance despite displaying differences in glass transition temperatures (Tg) and surface areas. All dispersions showed drug/polymer interactions indicated by positive deviations in Tg from the predicted values calculated using the Couchman–Karasz equation. Fourier transform infrared (FTIR) spectroscopic results confirmed the conversion of crystalline drug to the amorphous in the dispersions. Stability studies were preformed at 40°C and 75% relative humidity to investigate the physical stability of prepared dispersions. Recrystallization was observed after a month and the resultant dispersions were tested for their dissolution performance to compare with the dissolution performance of the dispersions prior to the stability study. The dissolution rate of the freeze-dried dispersions remained higher than both spray-dried dispersions after storage.  相似文献   

14.
Formulation of solid dispersions is one of the effective methods to increase the rate of solubilization and dissolution of poorly soluble drugs. Solid dispersions of chloramphenicol (CP) and sulphamethoxazole (SX) as model drugs were prepared by melt fusion method using polyethylene glycol 8000 (PEG 8000) as an inert carrier. The dissolution rate of CP and SX were rapid from solid dispersions with low drug and high polymer content. Characterization was performed using fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). FTIR analysis for the solid dispersions of CP and SX showed that there was no interaction between PEG 8000 and the drugs. Hyper-DSC studies revealed that CP and SX were converted into an amorphous form when formulated as solid dispersion in PEG 8000. Mathematical analysis of the release kinetics demonstrated that drug release from the various formulations followed different mechanisms. Permeability studies demonstrated that both CP and SX when formulated as solid dispersions showed enhanced permeability across Caco-2 cells and CP can be classified as well-absorbed compound when formulated as solid dispersions.  相似文献   

15.
The purpose of our study was to formulate and evaluate bicalutamide (BL) solid dispersions (SD). The physicochemical properties were evaluated by differential scanning calorimetry (DSC), Fourier-Transform infrared (FT-IR) spectroscopy, Powder X-ray diffractometry (PXRD), dissolution studies, and stability studies. The dissolution studies demonstrated that the dissolution of BL from BL-SD increased with an increase in carrier content (PVP K30). X-ray assays and DSC results both confirmed the amorphous state of BL in BL-SD. Stability studies conducted after 6 months showed that BL exhibited excellent stability in the solid dispersion of PVP K30 (1:5).  相似文献   

16.
Context: Piperine alkaloid, an important constituent of black pepper, exhibits numerous therapeutic properties, whereas its usage as a drug is limited due to its poor solubility in aqueous medium, which leads to poor bioavailability.

Objective: Herein, a new method has been developed to improve the solubility of this drug based on the development of solid dispersions with improved dissolution rate using hydrophilic carriers such as sorbitol (Sor), polyethylene glycol (PEG) and polyvinyl pyrrolidone K30 (PVP) by solvent method. Physical mixtures of piperine and carriers were also prepared for comparison.

Methods: The physicochemical properties of the prepared solid dispersions were examined using SEM, TEM, DSC, XRD and FT-IR. In vitro dissolution profile of the solid dispersions was recorded and compared with that of the pure piperine and physical mixtures. The effect of these carriers on the aqueous solubility of piperine has been investigated.

Results: The solid dispersions of piperine with Sor, PEG and PVP exhibited superior performance for the dissolution of piperine with a drug release of 70%, 76% and 89%, respectively after 2?h compared to physical mixtures and pure piperine, which could be due to its transformation from crystalline to amorphous form as well as the attachment of hydrophilic carriers to the surface of poorly water-soluble piperine.

Conclusion: Results suggest that the piperine solid dispersions prepared with improved in vitro release exhibit potential advantage in delivering poorly water-soluble piperine as an oral supplement.  相似文献   

17.
The aim of the present study was to improve the dissolution and flow properties of lurasidone hydrochloride (LH) by solid dispersion adsorbate (SDA) technique. Solid dispersions (SDs) of LH were prepared by fusion method using Poloxamer P188. The melt dispersion was adsorbed onto the porous carrier Florite (calcium silicate). A 32 factorial design was employed to quantify the effect of two independent variables, namely ratio of carrier (Poloxamer 188) and LH in SD and ratio of adsorbent (Florite) to SD. SDA granules of LH were studied for flow properties and characterized using differential scanning calorimetry, scanning electron microscopy, and X-ray diffraction. Tablets of optimized composition of SDA granules (equivalent to 20?mg of drug) and plain tablets were prepared by direct compression method. The dissolution studies were carried out in Mcllvaine buffer (pH 3.8) as per USFDA guidelines and characterized for parameters such as percent dissolution efficiency, t50, and Q30. Tablets prepared from SDA granules showed almost four-fold increase in cumulative percentage drug release as compared to tablets prepared from plain LH. The value of dissolution efficiency was enhanced from 49.60% for plain tablets to 94.15% for SDA tablets. SDA granules did not show any change in drug release and X-ray diffraction pattern after storage at 40?°C/75% of RH for 3?months, which confirms that Florite prevented conversion of drug from amorphous form to crystalline form improving physical stability of the amorphous state of LH.  相似文献   

18.
The objective of this work was to improve the dissolution rate and aqueous solubility of oxeglitazar. Solid dispersions of oxeglitazar in PVP K17 (polyvinilpyrrolidone) and poloxamer 407 (polyoxyethylene-polyoxypropylene block copolymer) were prepared by supercritical antisolvent (SAS) and coevaporation (CoE) methods. Drug-carrier formulations were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, gas chromatography, UV/VIS spectroscopy and in vitro dissolution tests. The highest dissolution rate (nearly 3-fold higher than raw drug) was achieved by preparation of drug/PVP K17 coevaporate. Oxeglitazar/PVP K17 solid dispersions were stabilized by hydrogen bonding but contained higher amount of residual dichloromethane (DCM) than poloxamer 407 formulations regardless of the method of preparation. SAS prepared oxeglitazar/poloxamer 407 dissolved more than two times faster than raw drug. However, unlike PVP K17, poloxamer 407 did not form a single phase amorphous solid solution with oxeglitazar which has been manifested in higher degrees of crystallinity, too. Among the two techniques, evaluated in this work, conventional coevaporation resulted in higher amorphous content but SAS reduced residual solvent content more efficiently.  相似文献   

19.
Coprecipitates of diflunisal and polyvinylpyrrolidone (PVP K15, K30, and K90) and physical mixtures were studied using x-ray diffraction analysis, infrared (IR) spectroscopy, differential scanning calorimetry (DSC), and hot-stage microscopy. X-ray diffraction results revealed an almost amorphous state, even in coprecipitates with a high content of drug, next to 70%, which was independent of the polymer molecular weight. The IR spectra of 70:30 drug-PVP solid dispersions suggest the formation of diflunisal-PVP hydrogen bonds. For 70:30 drug-polymer ratio, the physical mixture showed linear dissolution kinetics of free crystals, but the corresponding coprecipitates exhibit two different dissolution processes. When the 25:75 drug-polymer dispersion is analyzed by hot-stage microscopy, only solid plates of PVP are observed; the absence of drug particles may be due to a molecular dispersion of the drug into the polymer. Moreover, polymorphic changes of diflunisal were detected in the solid dispersions in comparison with the corresponding physical mixtures, which are always formed by polymorph II. At high concentrations of drug (75:25 and 80:20), x-ray diffraction patterns of solid dispersions showed the partial recrystallization of the drug, displaying the main diffraction peaks of polymorph I when ethanol was used as coprecipitation solvent, whereas diflunisal form IV was obtained in chloroform.  相似文献   

20.
The major goal of this research was to successfully formulate solid dispersion (SD) of the poorly soluble anticancer drug flutamide (FLT) using various hydrophilic polymers. Furthermore, to get more insight into SD, solid-state studies (miscibility and molecular interaction) were correlated with solution study (precipitation inhibition, dissolution). Hydrophilic polymers like PVP K90, HPMC, Eudragit EPO, and PEG 8000 were used at different drug-to-polymer w/w ratios. Solid-state miscibility studies were carried out using modulated differential scanning calorimetry (MDSC). SDs were prepared using solvent-evaporation technique and characterized by powder X-ray diffraction (PXRD) and MDSC. Infrared, Raman spectroscopy and molecular modeling were used to investigate drug-polymer interactions in the dispersions. Precipitation inhibition studies were carried out at various FLT-hydrophilic polymer ratios. Precipitation inhibition studies showed that PEG 8000 has the highest efficiency, followed by PVP K90, while HPMC and EPO showed no effect on precipitation inhibition. In the solid-state, MDSC of the physical mixture (PM) suggested that FLT is miscible to a greater extent with EPO and PEG 8000. Characterization of the amorphous dispersions using MDSC and PXRD concluded that FLT transformed from crystalline to amorphous form in the presence of PVP K90 and PEG 8000. Spectroscopic results confirmed stronger interaction of FLT with PVP K90 and PEG 8000, thereby confirming the in-solution precipitation and molecular modeling binding energy results. Amorphous dispersions formulated with PVP and PEG were stable and showed higher dissolution, an important property necessary to improve the physicochemical properties and drug delivery of poorly soluble anticancer drug FLT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号