首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The permeabilities of nitrogen, oxygen, and carbon dioxide through polyethylene–styrene graft copolymer films were measured by means of a gas permeability apparatus based on a modification of Barrer's high vacuum technique. Polyethylene–styrene grafts were prepared by mutual γ-ray irradiation of low-density polyethylene films in styrene–methanol solution. Densities and thicknesses of the graft copolymer films were determined. It was observed that the gas permeability constants decreased with increasing grafting to minimum values at 20–30% styrene grafting and increased again above 30% grafting. These results are explained in terms of a decrease in the free volume of the amorphous regions of the polyethylene by a “filling in” effect of the grafted polystyrene chains. Above 30% grafting, disruption of the crystallites may occur resulting in increased gas permeation. Activation energies for gas permeation through polyethylene–styrene graft copolymer films were calculated and found to decrease with increasing per cent styrene grafting. For nitrogen permeation, the activation energy decreased from 11.7 kcal/mole for unirradiated polyethylene to 9.5 kcal/mole for a 50.5% graft. Corresponding values for oxygen and carbon dioxide were 10.2–8.2 kcal/mole for a 48.7% graft and 8.4–6.5 kcal/mole for a 50.5% graft.  相似文献   

2.
The permeation and diffusion of helium, nitrogen, methane, ethane, and propane through γ-irradiated polyethylene films were investigated. These studies were carried out with two objectives in mind: (1) to determine the effect of crosslinking by γ irradiation on permeability and diffusivity using the gas molecules as molecular probes; and (2) to study the plasticizing effects of the low hydrocarbons on the polyethylene film. The γ-ray-induced crosslinking efficiency of polyethylene was investigated in the following irradiation atmospheres: vacuum, acetylene, and nitrogen–acetylene mixtures. Results showed that irradiation in acetylene decreased the crosslinking efficiency while an acetylene–nitrogen atmosphere increased the efficiency compared to irradiation in vacuum. Both the permeation constants and the diffusion coefficients were found to decrease with increasing irradiation dose while the activation energies increased. The permeation constants of the organic gases through polyethylene increased with molecular diameter while the diffusion coefficients decreased. This increase in permeability was attributed to an increase in the solubility due to solubilization of the membrane by the penetrant. For example, the molecular diameter of propane is 4.397 Å compared with 2.807 Å for methane; however, propane permeated the polyethylene film at a rate twice that of methane. Nitrogen and methane have approximately the same molecular diameters—2.7085 and 2.807 Å, respectively—but owing to the plasticizing effect of methane, it permeated the film at a rate three times greater than that of nitrogen. It is interesting to note that the stronger the plasticizing ability of the penetrant, the greater the effect of the irradiation dose. The permeability of propane decreased by 40.7%, while the permeability of helium decreased by 6.4% after an irradiation dose of 50 Mrad.  相似文献   

3.
An investigation of the influence of the melt shear viscosities of polyethylenes (PE) on the morphology, barrier, and impact properties of polyethylene/modified polyamide PE/MPA bottles is reported. The melt shear viscosities of polyethylenes exhibited a significant influence on the deformation and morphology of MPAs during the blow molding of polyethylene/modified polyamide (PE/MPA) blends. Some obscure MPA laminars were observed in PE/MPA bottles as the value of melt shear viscosity ratio of MPA to PE (VR) deviated significantly from the “optimum” range. In contrast, clear and elongated laminar structures of MPAs were found as the value of VR reached the “optimum” range. Similarly, the total impact energies (Ets) and permeation barrier properties of PE/MPA samples improved with the value of VR until it reached the “optimum” range, after which value Ets and permeation barrier properties of PE/MPA samples reduced significantly with further increasing VR. Possible mechanisms accounting for these interesting behaviors are presented in this study.  相似文献   

4.
The solid–fluid phase transitions for a series of linear polyethylene fractions (Mw: 800, 7000, 23 625, 52 000, 59 300 g/mol) in propane, ethane and ethylene were measured in the temperature range from 360 to 423 K and at pressures up to 2000 bar. Conditions of precipitation of the solid polyethylene from supercritical solutions seem to have minor influence on dissolution of the solid polymer in supercritical solvents. In general, an increase of pressure results in a shift of the solid–fluid phase transition to higher temperatures, i.e. solubility of polyethylene decreases. The solid–fluid phase boundaries for systems composed of low-molecular weight polyethylene and propane show temperature minima. The effect is not observed in the high-molecular weight polyethylene + propane systems and systems with ethane or ethylene as solvents. It was observed that the temperature of the solid–fluid phase transition measured at a constant pressure and a constant composition is not a monotonic function of molecular weight of the polymer. The order of the dissolution temperatures depends on pressure.  相似文献   

5.
The permeability and diffusivity of oxygen, carbon dioxide, nitrogen, and helium have been obtained for a range of linear low density polyethylene (LLDPE) films prepared from the same raw materials but with different processing conditions. The measurements were carried out by means of a permeation technique over the temperature interval where the α-relaxation processes were observed in earlier studies. The temperature dependence of the permeability and diffusion coefficients of gases shows 2 well-differentiated regions in all films. The break temperature of these regions is approximately located at the same temperature as the α-relaxation takes place. Both the permeability and their temperature dependence do not show a noticeable influence on the processing conditions. The effect of processing conditions on the diffusivity seems to be more complex. Differences are observed for different films in the diffusion coefficients, in the case of oxygen, and in their change with the temperature, which is particularly marked in the case of carbon dioxide. Fujita's free volume model has been applied to diffusivity data in order to study the influence of films microstructure in gas permeation properties through them. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 23–37, 1998  相似文献   

6.
The technique of Thermo Stimulated Creep (TSC) has been applied to the study of anelastic properties of polyethylene, polypropylene, their copolymers and blends. In the temperature range ?200 to 100°C, complex TSC peaks were observed in all samples, namely around 0°C, about the same temperature as for the homopolypolymer polypropylene. By applying “fractional stresses”, with a convenient choice or the loading program, these peaks have been experimentally resolved. Two components can be distinguished: 1. The “low temperature” component is characterized by mechanical retardation times following a compensation law. It has been attributed to microbrownian motions of polypropylene sequences liberated at the glass transition of the “true” amorphous regions. 2. The “high temperature” component which is influenced by thermal treatment has been assigned to microbrownian motions of polypropylene sequences liberated at the glass transition of the “constrained” amorphous regions. In block polymers, an additional TSC peak is observed around ?50°C: it has been associated with the glass transition of ethylene-propylene-rubber (EPR) interphase. The coupling of this interphase with polyethylene and polypropylene phases is insured by diffusion of some ethylene and propylene sequences in-EPR. At about ?140°C, a TSC peak associated with the low temperature component of the glass transition of polyethylene can be distinguished in all the materials studied.  相似文献   

7.
The permeation and separation characteristics of four different alcohol—water systems through cellophane and poly(vinyl alcohol) membranes were investigated. The homologous series of linear alcohols n-propanol, ethanol, and methanol as well as isopropanol were studied. A specially designed permeation cell was used to study permeation rates at temperatures ranging from 30° to 50°C. The dependency of both permeation and separation on the molecular size and shape of the permeating species was discussed qualitatively. The temperature dependence of the permeation rate for both pure compounds and binary mixtures was expressed by Arrhenius-type relationships. The rate was found to increase with increasing temperature while the separation decreased. Activation energies of 4–9 kcal/mole were calculated for alcohol—water solutions through cellophane, and of 8–15 kcal/through poly(vinyl alcohol). Departure of permeation rates from the ideal rates were discussed in terms of permeation “enhancement” or “depression.” These phenomena were explained in terms of both the plasticizing action of water and the “clustering” of water molecules within the polymer network.  相似文献   

8.
《分离科学与技术》2012,47(6):1323-1337
Abstract

Hollow fibers were spun from low-density polyethylene, an ethylene/propylene copolymer, ethylene/vinyl acetate copolymers, and ethylene/ethyl acrylate copolymers. The phenol permeation rates through these hollow fibers by reactive dialysis were measured over a range of temperatures, allowing the calculation of the apparent activation energies for transport. The permeation rates for phenol transport were found to be dependent upon the degree of crystallinity in the hollow fiber and the increased solubility of phenol in the hollow fiber due to the presence of the polar ethyl acrylate and vinyl acetate groups in the amorphous phase.  相似文献   

9.
The aim of this work is to measure the hydrogen transport and solubility parameters in the commercial alumina. Measurements are conducted using a time-dependent permeation method over the temperature range 1273–1673 K with hydrogen driving pressures in the range 104–105 Pa (100–1000 mbar). A half-power pressure dependence (diffusion-limited permeation) of the permeation flux for alumina is observed. The Arrhenius expressions for the hydrogen permeability, diffusivity, and Sieverts' constant values obtained from a fitting to the whole temperature range are as follows:  
  相似文献   

10.
Membranes were fabricated with high-density polyethylene(HDPE) and ethylene vinyl acetate(EVA) blend through thermally induced phase separation and were then used for vacuum membrane distillation(VMD).The membranes were supported by nonwoven polyester fabric with a special cellular structure. Different membrane samples were obtained by adjusting the polymer concentration, HDPE/EVA weight ratio, and coagulation bath temperature. The membranes were characterized by scanning electron microscopy(SEM) analysis, contact angle test, and evaluation of porosity and pore size distribution. A series of VMD tests were conducted using aqueous NaCl solution(0.5 mol·L~(-1)) at a feed temperature of 65 ℃ and permeate side absolute pressure of 3 kPa. The membranes showed excellent performance in water permeation flux, salt rejection, and long-term stability. The HDPE/EVA co-blending membranes exhibited the largest permeation flux of 23.87 kg·m~(-2)·h~(-1) and benign salt rejection of ≥99.9%.  相似文献   

11.
In this paper, poly(amide-6-β-ethylene oxide) (PEBA1657) copolymer was used to prepare multilayer polyetherimide (PEI)/polydimethylsiloxane (PDMS)/PEBA1657/PDMS composite membranes by dip-coating method. Permeation behaviors of ethylene, ethane, propylene, propane, n-butane, methane and nitrogen through the multilayer composite membranes were investigated over a range of operating temperature and pressure. The permeances of light hydrocarbons through PEI/PDMS/PEBA1657/PDMS composite membranes increase with their increasing condensability, and the olefins are more permeable than their corresponding paraffins. For light hydrocarbons, the gas permeances increase significantly as temperature increasing. When the transmembrane pressure difference increases, the gas permeance increases moderately due to plasticization effect, while their apparent activation energies for permeation decrease.  相似文献   

12.
The permeation of n-butane, propane, and ethane in ethylcellulose has been measured over a pressure range from 25 to 200 mm Hg and over the temperature range from 30 to 70°C. The permeation and diffusional time lag of each of the three gases in ethylcellulose is pressure dependent. Transport of the gases through ethylcellulose can be described by the partial immobilization model. It was found that, in general, the Langmuir-mode species diffusion coefficients are lower than the Henry's law species diffusion coefficients. The logarithm of diffusion coefficients at zero penetrant concentration varies linearly with the square of the molecular diameter of n-butane, propane, and ethane permeating through ethylcellulose. This relationship suggests that the diffusion process depends upon the availability of sufficient cross-sectional area for the penetrant to diffuse. An Arrhenius temperature dependence was observed for permeation coefficients and diffusion coefficients for n-butane, propane, and ethane in ethylcellulose. The activation energy of diffusion at zero penetrant concentration is directly proportional to the square of the gas molecular diameter and the entropy of activation. This observation is consistent with the view that the activation energy of diffusion is associated with the energy required to produce a space of sufficient cross-section for the diffusion molecule to pass.  相似文献   

13.
Solutions of bovine serum albumin (BSA) were ultrafiltered with and without stirring through membranes partially permeable to the solute, over a range of pH values. At the isoelectric point, flux was a minimum and rejection was a maximum. For all conditions, the flux for stirred ultrafiltration was greater than without stirring, as expected from conventional theory, and in contrast to recently reported “anomalous” behavior measured at the isoelectric point. Some evidence of unusual behavior at the isoelectric point was obtained when the flux of a freshly ultrafiltered solution of BSA was compared to that when the permeate and retentate were recombined, and when the retentate concentration was adjusted to the original concentration. For pH values other than the isoelectric point, the fluxes were similar for each set of experiments. At the isoelectric point, it was also found that flux was insensitive to changes in stirring speed. The unusual behavior at the isoelectric point is attributed to protein aggregation and precipitation causing loss of membrane permeability.  相似文献   

14.
Supported liquid membrane, as one type of facilitated transport membranes, was used for the separation of propylene–propane mixtures. The effect of trans-membrane pressure and carrier concentration on membrane separation performance were evaluated in terms of mixed-gas selectivity, propylene and propane permeances and propylene and propane permeation fluxes. A general dimensionless model for the transport of components across the membrane was proposed and solved numerically by orthogonal collocation method. Experimental results showed that for a 70:30 (vol.%) propylene–propane mixture, at pressure 120 kPa and carrier concentration 20 wt.%, a propylene permeation flux of 1.46 × 10−4 mol/m2 s was obtained. Mathematical results are in well agreement with experimental results. The average deviation between experimental and modeling results was found to be 5.3% for propylene permeation flux and 0.03% for propane permeation flux.  相似文献   

15.
The mass transfer profile (permeability, diffusion, and solubility coefficients) of chlorine dioxide (ClO2), a strong oxidizing agent that is used in food and pharmaceutical packaging, was determined through various common polymeric packaging materials. A continuous system for measuring permeation of ClO2, using an electrochemical detector, was developed. It was observed that biaxially‐oriented poly(propylene), poly(ethylene terephthalate), poly(lactic acid), nylon, and a multilayer structure of ethylene vinyl acetate and ethylene vinyl alcohol were better barriers for gaseous ClO2, as compared to polyethylene, poly(vinyl chloride), and polystyrene. The activation energies of permeation for ClO2 through poly(ethylene terephthalate) and poly(lactic acid) were determined to be 51.05 ± 4.35 and 129.03 ± 2.82 kJ/mol, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, , 2009  相似文献   

16.
A recent “free volume” model of gas permeation (3) has been extended to the transport of gas mixtures through nonporous polymeric membranes. The present model assumes that the rates of transport of the components of a mixture depend on the free volume of the gas-polymer system, and that the effect of these components on the free volume is additive. The latter assumption limits the model to relatively dilute systems, with total penetrant concentrations of perhaps less than 0·2 volume-fraction. The prediction of permeation fluxes and permeability coefficients requires the knowledge of specified free-volume parameters which can be determined from measurements of diffusion coefficients and viscosities of the pure penetrant-polymer systems. When the systems are sufficiently dilute to obey Henry's law, the permeability coefficients for the components of a gas mixture can be predicted using only permeability measurements with the pure components. The extended free-volume model can be applied also to the permeation of liquid mixtures. The theoretical predictions are compared with the results of several experimental studies, and the potential usefulness and limitations of the model are discussed.  相似文献   

17.
This paper proposes a permeance equation for vapour–permanent gas mixtures in a silicone‐coated polymeric membrane. The equation was derived from the Arrhenius relationship by combining an apparent activation energy and interaction parameter. Accurate values of transmembrane flux were obtained by incorporating this proposed equation, which was dependent on temperature and feed composition. The equation parameters were correlated with the experimental data of eight mixtures consisting of hydrocarbons such as ethylene, ethane, propylene and propane with nitrogen covering a broad range of temperature and concentration. A numerical integration scheme was used for developing a crossflow model utilizing the above equation, which allowed the estimation of product properties including the membrane plasticization cases. The study also reports examples of implementation of this approach in potential industrial applications for the recovery of ethylene and propylene from nitrogen.  相似文献   

18.
《分离科学与技术》2012,47(2):224-233
Newly reported integrated processes are discussed for aliphatic (paraffin) hydrocarbon dehydrogenation into olefins and subsequent polymerization into polyolefins (e.g., propane to propylene to polypropylene, ethane to ethylene to polyethylene). Catalytic dehydrogenation membrane reactors (permreactors) made by inorganic or metal membranes are employed in conjunction with fluid bed polymerization reactors using coordination catalysts. The catalytic propane dehydrogenation is considered as a sample reaction in order to design an integrated process of enhanced propylene polymerization. Related kinetic experimental data of the propane dehydrogenation in a fixed bed type catalytic reactor is reviewed which indicates the molecular range of the produced C1-C3 hydrocarbons. Experimental membrane reactor conversion and yield data are also reviewed. Experimental data were obtained with catalytic membrane reactors using the same catalyst as the non-membrane reactor. Developed models are discussed in terms of the operation of the reactors through computational simulation, by varying key reactor and reaction parameters. The data show that it is effective for catalytic permreactors to provide streams of olefins to successive polymerization reactors for the end production of polyolefins (i.e., polypropylene, polyethylene) in homopolymer or copolymer form. Improved technical, economic, and environmental benefits are discussed from the implementation of these processes.  相似文献   

19.
The main objective of this study is to investigate the barrier properties and mechanisms of polyethylene (PE), PE/modified polyamide (MPA), and PE/blends of MPA and ethylene vinyl alcohol copolymer (MPAEVOH) bottles against permeation of polar/nonpolar (acetone/white spirit) mixed solvents. The mixed solvent permeation resistance improves dramatically after blending MPA and MPAEVOH barrier resins in PE matrices during blow molding. By using the proper MPAEVOH compositions, the white spirit permeation rate of PE/MPAEVOH bottles at 40°C can be about 145 times slower than that of the PE bottle specimen; however, it is still 2.5 times faster than that of the PE/MPA bottles. In contrast, the rate of polar acetone solvent permeation through the PE bottle is much slower than that of white spirit and only slightly faster than that through the PE/MPA and PE/MPAEVOH bottle specimens. In contrast, the permeation rates of acetone/white spirit mixed solvents into PE/MPA bottles are at least 20–60 times faster than the summation permeation rates calculated using the simple mixing rule when the acetone contents in the mixed solvents are between 10 and 70 wt %. It is somewhat interesting that, after blending the proper amounts of EVOH in MPA, the mixed solvent permeation rates of PE/MPAEVOH bottles are dramatically reduced and are very close to the summation permeation rates calculated using the simple mixing rule when the acetone contents are in the particular “window” range. These interesting barrier properties of PE/MPA and PE/MPAEVOH bottle specimens were investigated in terms of the free volumes, barrier properties, molecular interactions in the amorphous phases of the barrier resins, and their resulting morphological structures that present in their corresponding bottles. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1333–1344, 2005  相似文献   

20.
In this study, the effect of film preparation conditions on the gas permeation properties of polyethylene (PE) and ethylene vinyl acetate (EVA) films (containing 18 and 28 wt% vinyl acetate) was investigated. Film blowing and phase inversion methods were applied in the production of PE and EVA films, respectively. The permeation of pure oxygen and carbon dioxide gases was measured at room temperature. The results indicated that with the increase of PE film thickness, permeability and solubility of O2 and CO2 in these films decreased; but the diffusivities of gases through PE films increased. In addition, in the case of EVA copolymers, by increasing the content of vinyl acetate, the permeability of CO2 increased. The rate of increase in CO2 permeability was different for samples having different preparation conditions. For example, the samples prepared using chloroform as the solvent instead of THF, showed lower CO2 permeability. Also, the morphological studying of film structure indicated that the higher CO2 permeability for the samples made from THF solvent is due to the existing of higher porosity in the under layer polymer area. Also scanning electron microscopy (SEM) micrographs showed that with the usage of phase inversion method, there will be a thin dense layer near to the glass substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号