首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article describes the preparation of biocompatible radioactive holmium-loaded particles with appropriate nanoscale size for radionuclide intratumoral administration by the targeted multitherapy (TMT) technique. For this objective, holmium acetylacetonate has been encapsulated in poly-l-lactide (PLLA)-based nanoparticles (NP) by oil-in-water emulsion–solvent evaporation method. NP sizes ranged between 100 and 1,100 m being suitable for the TMT administration method. Elemental holmium loading was found to be around 18% wt/wt and the holmium acetylacetonate trihydrate (HoAcAc) encapsulation efficacy was about 90%. Different experiments demonstrated an amorphous state of HoAcAc after incorporation in NPs. The NPs were irradiated in a nuclear reactor with a neutron flux of 1.1 × 1013 n/cm2/s for 1 h, which yielded a specific activity of about 27.4 GBq/g of NPs being sufficient for our desired application. Microscopic analysis of irradiated NPs showed some alteration after neutron irradiation as some NPs looked partially coagglomerated and a few pores appeared at their surface because of the locally released heat in the irradiation vials. Furthermore, differential scanning calorimetry (DSC) results indicated a clear decrease in PLLA melting point and melting enthalpy reflecting a decrease in polymer crystallinity. This was accompanied by a clear decrease in polymer molecular weights, which can be ascribed to a radiation-induced chain scission mechanism. However, interestingly, other experiments confirmed the chemical identity retention of both HoAcAc and PLLA in irradiated NPs despite this detected decrease in the polymer crystallinity and molecular weight. Although neutron irradiation has induced some NPs damage, these NPs kept out their overall chemical composition, and their size distribution remained suitable for the TMT administration technique. Coupled with the TMT technique, these NPs may represent a novel potential radiopharmaceutical agent for intratumoral radiotherapy.  相似文献   

2.
氧氟沙星PLGA微囊的制备、表征和影响包封率的因素   总被引:1,自引:0,他引:1  
氧氟沙星在眼科临床广泛应用,本研究以氧氟沙星作为模型药物,采用水/油/水(w/o/w)的复乳化和溶剂扩散技术制备氧氟沙星聚乳酸-聚乙醇酸(PLGA)微囊,对影响包封率的工艺参数如药物浓度、PLGA使用量、初乳复乳的搅拌速率进行研究,并对微囊的粒径、表面电位和表面形态的理化性能进行了表征。测试结果表明,根据优化工艺制备的氧氟沙星PLGA微囊的平均粒径511.9±14.6nm,zeta电位-17.97±0.80mV,包封率54.2%,载药量1.94%。包封率随PLGA使用量、初乳搅拌速率的增加而上升,随内水相药物体积和浓度的增加而下降。通过优化的水/油/水(w/o/w)复乳化和溶剂扩散技术制备氧氟沙星PLGA载药微囊的粒度分布窄,载药量和包封率适中,具有较好的临床应用前景。  相似文献   

3.
Solid dispersions using water-soluble carriers were studied for improving the dissolution of docetaxel, a poorly soluble compound. In order to obtain the most optimized formulation, we prepared many solid dispersions with different carriers, different solvents, or at a series of drug-to-carrier ratios, and compared their dissolution. The accumulative dissolution of docetaxel from poloxamer 188 was more excellent than that from PVPk30 and glyceryl monostearate, and the dissolution of docetaxel from solid dispersion was markedly higher than that of pure docetaxel; meanwhile the increased dissolution was partly dependent on the ratios of docetaxel and poloxamer 188. The ethanol used to prepare solid dispersion is of more significant effect on the dissolution of docetaxel than that of acetone. The docetaxel/poloxamer 188 system was characterized by differential scanning calorimetry (DSC), X-ray diffractometry (XRD), and environmental scanning electron microscope (ESEM). The results of DSC, XRD, and ESEM analyses of docetaxel/poloxamer 188 system showed that there are intermolecular interactions between docetaxel and poloxamer, and the crystallinity of docetaxel disappeared. These results show that solid dispersion is a promising approach of developing docetaxel drug formulates.  相似文献   

4.
In our pursuit to develop suitable therapeutic particulate systems for intratumoral delivery by the targeted multi-therapy (TMT) technique, we describe the preparation of paclitaxel-loaded poly(D,L-lactic-co-glycolic) acid (PLGA) microparticles (MPs) (drug loading 35-38%, wt/wt; size 0.7-5 microm). Magnetite (15%, wt/wt) was also incorporated in some preparations for a future magnetic resonance imaging (MRI)-guided delivery. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) experiments showed that paclitaxel was not encapsulated in its initial crystalline form. The paclitaxel in vitro release pattern showed a biphasic tendency with a burst effect followed by a sustained release (28% released amount after 1 month), which was accompanied with MP erosion and degradation signs as confirmed by scanning electronic microscopy (SEM) micrographs. The paclitaxel-loaded MPs demonstrated a dose-dependent antitumor effect on human uterine cancer cells, with an IC(50) value relatively close to that of commercial Taxol. This paclitaxel delivery system represents a potent antiprofilerative and radiosensitizer agent for intratumoral administration via the TMT technique.  相似文献   

5.
A novel microemulsion was prepared to increase the solubility and the in vitro transdermal delivery of poorly water‐soluble vinpocetine. The correlation between the transdermal permeation rate and structural characteristics of vinpocetine microemulsion was investigated by pulsed field gradient nuclear magnetic resonance (PFG‐NMR). For the microemulsions, oleic acid was chosen as oil phase, PEG‐8 glyceryl caprylate/caprate (Labrasol®) as surfactant (S), purified diethylene glycol monoethyl ether (Transcutol P®) as cosurfactant (CoS), and the double‐distilled water as water phase. Pseudo‐ternary phase diagrams were constructed to obtain the concentration range of each component for the microemulsion formation. The effects of various oils and different weight ratios of surfactant to cosurfactant (S/CoS) on the solubility and permeation rate of vinpocetine were investigated. Self‐diffusion coefficients were determined by PFG‐NMR in order to investigate the influence of microemulsion composition with the equal drug concentration on their transdermal delivery. Finally, the microemulsion containing 1% vinpocetine was optimized with 4% oleic acid, 20.5% Labrasol, 20.5% Transcutol P, and 55% double‐distilled water (w/w), in which drug solubility was about 3160‐fold higher compared to that in water and the apparent permeation rate across the excised rat skin was 36.4?±?2.1 µg/cm2/h. The physicochemical properties of the optimized microemulsion were examined for the pH, viscosity, refractive index, conductivity, and particle size distribution. The microemulsion was stable after storing more than 12 months at 25°C. The irritation study showed that the optimized microemulsion was a nonirritant transdermal delivery system.  相似文献   

6.
This article describes the preparation of biocompatible radioactive holmium-loaded particles with appropriate nanoscale size for radionuclide intratumoral administration by the targeted multitherapy (TMT) technique. For this objective, holmium acetylacetonate has been encapsulated in poly-L-lactide (PLLA)-based nanoparticles (NP) by oil-in-water emulsion-solvent evaporation method. NP sizes ranged between 100 and 1,100 m being suitable for the TMT administration method. Elemental holmium loading was found to be around 18% wt/wt and the holmium acetylacetonate trihydrate (HoAcAc) encapsulation efficacy was about 90%. Different experiments demonstrated an amorphous state of HoAcAc after incorporation in NPs. The NPs were irradiated in a nuclear reactor with a neutron flux of 1.1 x 10(13) n/cm(2)/s for 1 h, which yielded a specific activity of about 27.4 GBq/g of NPs being sufficient for our desired application. Microscopic analysis of irradiated NPs showed some alteration after neutron irradiation as some NPs looked partially coagglomerated and a few pores appeared at their surface because of the locally released heat in the irradiation vials. Furthermore, differential scanning calorimetry (DSC) results indicated a clear decrease in PLLA melting point and melting enthalpy reflecting a decrease in polymer crystallinity. This was accompanied by a clear decrease in polymer molecular weights, which can be ascribed to a radiation-induced chain scission mechanism. However, interestingly, other experiments confirmed the chemical identity retention of both HoAcAc and PLLA in irradiated NPs despite this detected decrease in the polymer crystallinity and molecular weight. Although neutron irradiation has induced some NPs damage, these NPs kept out their overall chemical composition, and their size distribution remained suitable for the TMT administration technique. Coupled with the TMT technique, these NPs may represent a novel potential radiopharmaceutical agent for intratumoral radiotherapy.  相似文献   

7.
Although paclitaxel is soluble in vitamin E up to 40 mg per g, crystallization was detected at loadings higher than 15 mg per g. Water appeared to be an important factor causing the observed crystallization, and therefore, a freeze-drying technique was investigated to produce reconstitutible vitamin E emulsions, to increase drug loading without crystal formation after reconstitution. The emulsion was freeze-dried using a laboratory freeze-drier and the droplet size was measured using dynamic light scattering. The freeze-dried emulsions using sucrose as a cryoprotectant could be easily reconstituted. The loading of paclitaxel in the freeze-dried emulsions could be increased to 25 mg per g of vitamin E without crystal formation, and the mean emulsion droplet size remained smaller than 0.2 μm over 430 days (4 ± 2°C). The previously observed surfactant-enhanced crystallization could also be suppressed using the freeze-drying technique.  相似文献   

8.
The preparation of pH-dependent, time-based and enzyme degradable pellets was investigated for use as an oral colonic drug delivery system. It was expected that drug would be released immediately once the pellets reached the colon. The pellets were prepared using extrusion-spheronizing equipment and subsequently coated with three layers of three functional polymers by an air-suspension technique. The core consisted of 5-aminosalicylic acid (5-ASA) as a model drug, CaP as an enzyme-degradable material and microcrystalline cellulose (MCC) as an additive. As far as the three coated layers were concerned, the outer layer was coated with Eudragit L30D-55 for protection against gastrointestinal juices, the intermediate layer was coated with ethylcellulose (EC) to inhibit drug release during passage through the small intestine, and the inner film was coated with pectin for swelling and enzyme-degradation, which required a 30, 10, and 12% weight gain, respectively. Several micromeritic properties of the core pellets, including particle size distribution, particle size, degree of circularity, and friability, were evaluated to investigate the effects of the formulations of the cores and preparation conditions. Also, dissolution testing of the cores showed that the presence of calcium pectinate (CaP) markedly increased the drug release rate from the cores, as determined by scanning electron microscopy (SEM). In-vitro release studies indicated that the coated pellets completely protected the drug release in 0.1 mol/L HCl, while the drug release was delayed for 3–4 hr in pH 6.8 PBS. A synergistic effect of enzyme dependence for the coated pellets was seen following removal of the coated layer and during contact with colonic enzymes. Consequently, it was possible to achieve colon-specific drug delivery using this triple-dependence system.  相似文献   

9.
Objectives: The aim of this research was to design a controlled release, spray dried, mupirocin calcium-loaded microparticles (MP) with acrylic polymer and assess the influence of a feed solvent at preselected drug:polymer proportions (1:5 and 2:1 (w/w)) on the performance and stability of the prepared MP.

Methods: Physicochemical properties of MP were assessed using modulated differential scanning calorimetry (MDSC), and thermogravimetric analyses (TGA), Fourier transformed infrared spectroscopy (FTIR) and X-ray analyses and were correlated with drug release. Morphology and particle size were determined using low-angle laser light scattering and a scanning electron microscope. A time-kill assay was conducted on two strains of Staphylococcus aureus to evaluate the antimicrobial activity of MP.

Results and discussion: The MP formed solid dispersions without apparent drug crystallization. Drug-polymer miscibility, morphology, drug release and consequently antimicrobial activity were dependent on drug loading (DL) and the used solvent. The superior control of drug release from MP was achieved for the higher DL (2:1 (w/w) drug:polymer proportion) using solvents in the following order: methanol ≈ methanol:ethanol (50:50, w/w) > isopropanol:acetone (40:60, w/w). Moreover, a time-kill assay performed on S. aureus (ATCC 29213) and methicillin-resistant S. aureus strains confirmed the prolonged release and preservation of antimicrobial activity of the microencapsulated drug. The physical aging of the solid dispersion after 10 months of storage had negligible impact on the MP performance.

Conclusions: Acrylic-based MP were confirmed as suitable microcarriers for prolonged drug release using a well-established spray drying technique, while solvent influence was strongly related to the DL employed.  相似文献   

10.
Porous silica prepared by using an acrylic emulsion has been impregnated with bismuth ion resulting in Bi2SiO5 species containing surface.The as-prepared materials have been characterized by X-ray diffraction spectroscopy (XRD),X-ray photoelectron spectroscopy(XPS),UV-Vis diffuse reflectance spectroscopy(UV-Vis DRS), scanning electron microscopy(SEM),energy dispersive analysis of X-ray(EDAX),transmission electron microscopy(TEM),Fourier transform infrared spectroscopy(FTIR) and N2 adsorption/desorption techniques. EDAX analysis confirms the penetration of bismuth ions into the framework of silica to form Bi2SiO5,which is substantiated by XRD.The UV—Vis DRS shows that the catalysts are optically active and XPS confirms the inclusion of bismuth into the framework of silica.FTIR spectra illustrate the formation of Bi—O—Si linkages in the porous silica framework.SEM and TEM show the spherical morphology,whereas N2 adsorption/desorption study confirms the porosity of the prepared materials.The photocatalytic activity of the material is evaluated for the degradation of isoproturon herbicide and it is found that the material is active as compared to the commercial P-25 Degussa TiO2.  相似文献   

11.
The aim of the investigation is to develop solid lipid nanoparticles (SLN) and nano-structured lipid carrier (NLC) as carriers for topical delivery of nitrendipine (NDP). NDP-loaded SLN and NLC were prepared by hot homogenization technique followed by sonication, and they were characterized for particle size, zeta potential, entrapment efficiency, stability, and in vitro release profiles. Also the percutaneous permeation of NDPSLN A, NDPSLN B, and NDPNLC were investigated in abdominal rat skin using modified Franz diffusion cells. The steady state flux, permeation coefficient, and lag time of NDP were estimated over 24 h and compared with that of control (NDP solution). The particle size was analyzed by photon correlation spectroscopy (PCS) using Malvern zeta sizer, which shows that the NDPSLN A, NDPSLN B, and NDPNLC were in the range of 124–300 nm during 90 days of storage at room temperature. For all the tested formulations (NDPSLN A, NDPSLN B, and NDPNLC), the entrapment efficiency was higher than 75% after 90 days of storage. The cumulative percentage of drug release at 24 h was found to be 26.21, 30.81, and 37.52 for NDPSLN A, NDPSLN B, and NDPNLC, respectively. The results obtained from in vitro release profiles also indicated the use of these lipid nanoparticles as modified release formulations for lipophilic drug over a period of 24 h. The data obtained from in vitro release from NDPSLN A, NDPSLN B, and NDPNLC were fitted to various kinetic models. High correlation was obtained in Higuchi and Weibull model. The release pattern of drug is analyzed and found to follow Weibull and Higuchi equations. The permeation profiles were obtained for all formulations: NDPSLN A, NDPSLN B, and NDPNLC. Of all the three formulations, NDPNLC provided the greatest enhancement for NDP flux (21.485 ± 2.82 μg/h/cm2), which was fourfold over control (4.881 ± 0.96 μg/h/cm2). The flux obtained with NDPSLN B (16.983 ± 2.91 μg/h/cm2) and NDPNLC (21.485 ± 2.82 μg/h/cm2) meets the required flux (16.85 μg/h/cm2).  相似文献   

12.
Despite the ongoing extensive research, cancer therapeutics still remains an area with unmet needs which is hampered by shortfall in the development of newer medicines. The present study discusses a nano-based combinational approach for treating solid tumor. Dual-loaded nanoparticles encapsulating gemcitabine HCl (GM) and simvastatin (SV) were fabricated by double emulsion solvent evaporation method and optimized. Optimized nanoparticles showed a particle size of 258?±?2.4?nm, polydispersity index of 0.32?±?0.052, and zeta potential of ?12.5?mV. The size and the morphology of the particles wee further confirmed by transmission electron microscopy (TEM) and scanning electron microscopy, respectively of the particles. The entrapment efficiency of GM and SV in the nanoparticles was 38.5?±?4.5% and 72.2?±?5.6%, respectively. The in vitro release profile was studied for 60?h and showed Higuchi release pattern. The cell toxicity was done using MTT assay and lower IC50 was obtained with the nanoparticles as compared to the pure drug. The bioavailability of GM and SV in PLGA nanoparticles was enhanced by 1.4-fold and 1.3-fold respectively, compared to drug solution. The results revealed that co-delivery of GM and SV could be used for its oral delivery for the effective treatment of pancreatic cancer.  相似文献   

13.
This three-part review has been developed following the evaluation of literature where ethylcellulose, methylcellulose, or hypromellose was used to make microcapsules. Parts 1 and 2 of the review are published in separate papers. Part 1 covers the various materials used to formulate microcapsules, and Part 2 covers the various techniques used to make microcapsules. In the current paper, Part 3 covers the end-use applications for which microcapsules are used. Examples of applications to be covered include modified release, improved efficacy and safety, multiparticulate compression, improved processability and stability, and taste- and odor-masking. It is hoped that formulators can use Part 3 to understand the various end-use applications of microcapsules made from these encapsulating polymers. SciFinder was utilized to perform the literature search. SciFinder leverages literature databases, such as Chemical Abstracts Service Registry and Medline. A total of 379 references were identified during the review. The need for a three-part review reflects the extensive amount of literature identified concerning these three encapsulating polymers.  相似文献   

14.
Chemotherapy suffers numbers of limitations including poor drug solubility, nonspecific biodistribution, and inevitable adverse effects on normal tissues. Tumor‐targeted delivery and intratumoral stimuli‐responsive release of drugs by nanomedicines are considered to be highly promising in solving these problems. Compared with traditional chemotherapeutic drugs, high concentration of nitric oxide (NO) exhibits unique anticancer effects. The development of tumor‐targeting and intratumoral microenvironment‐responsive NO‐releasing nanomedicines is highly desired. Here a novel kind of organic–inorganic composite nanomedicine (QM‐NPQ@PDHNs) is presented by encapsulating a glutathione S‐transferases π (GSTπ)‐responsive drug O2‐(2,4‐dinitro‐5‐{[2‐(β‐d ‐galactopyranosyl olean‐12‐en‐28‐oate‐3‐yl)‐oxy‐2‐oxoethyl] piperazine‐1‐yl} phenyl) 1‐(methylethanolamino)diazen‐1‐ium‐1,2‐dilate (NPQ) as NO donor and an aggregation‐induced‐emission (AIE) red fluorogen QM‐2 into the cores of the hybrid nanomicelles (PEGylated disulfide‐doped hybrid nanocarriers (PDHNs)) with glutathione (GSH)‐responsive shells. The QM‐NPQ@PDHN nanomedicine is able to respond to the intratumoral over‐expressed GSH and GSTπ, resulting in the responsive biodegradation of the protective organosilica shell and NPQ release, and subsequent NO release within the tumor, respectively, and thus normal organs remain unaffected. This work demonstrates a paradigm of dual intratumoral redox/enzyme‐responsive NO‐release nanomedicine for tumor‐specific and high‐efficacy cancer therapy.  相似文献   

15.
16.
Circulating tumor cells (CTCs) escape from primary or metastatic lesions and enter into circulation, carrying significant information of cancer progression and metastasis. Capture of CTCs from the bloodstream and the characterization of these cells hold great significance for the detection, characterization, and monitoring of cancer. Despite the urgent need from clinics, it remains a major challenge to capture and retain these rare cells from human blood with high specificity and yield. Recent exciting advances in micro/nanotechnology, microfluidics, and materials science have enable versatile, robust, and efficient cell isolation and processing through the development of new micro/nanoengineered devices and biomaterials. This review provides a summary of recent progress along this direction, with a focus on emerging methods for CTC capture and processing, and their application in cancer research. Furthermore, classical as well as emerging cellular characterization methods are reviewed to reveal the role of CTCs in cancer progression and metastasis, and hypotheses are proposed in regard to the potential emerging research directions most desired in CTC‐related cancer research.  相似文献   

17.
Biodegradable microspheres of poly(?)caprolactone were prepared by solvent evaporation method for controlled release of repaglinide. The prepared microspheres were spherical in shape having smooth surface. The average diameter was in the range of 24 to 31.04 µm. Drug entrapment efficiency of the prepared microspheres was in the range of 68.81% to 79.30%. Differential scanning calorimetry and x-ray diffraction analyses indicated the amorphous dispersion of drug in the microspheres. The drug release was continued up to 24 h depending upon the formulation variables; drug release was slow from the microspheres which were prepared with higher concentration of polymer and as the initial drug loading was increased, the drug release was also increased. A non-Fickian transport was the mechanism of drug release for all the microspheres. The in vivo anti-diabetic activity performed on steptozotocin induced rats indicated that the plain repaglinide has shown maximum percentage of reduction in blood glucose at the end of 3 h and then the percentage of reduction in blood glucose was decreased. While in case of rats treated with PCL5 microspheres, the percentage of reduction in glucose level was slow as compared to plain repaglinide within 3 h, but it was gradually increased to 74.86% at the end of 24 h.  相似文献   

18.
19.
In this study, tetrandrine-loaded cationic solid lipid nanoparticles (TET-CNP) and solid lipid nanoparticles (TET-NP) were prepared by the emulsion evaporation-solidification at low temperature method. The particle size, zeta potential, and entrapment efficiency of TET-CNP and TET-NP were characterized. The results showed that the TET-CNP and TET-NP had average diameters of (15.29?±?1.34) nm and (18.77?±?1.23) nm with zeta potentials of (5.11?±?1.03) mV and (?8.71?±??1.23) mV and entrapment efficiencies of (94.1?±?2.37)% and (95.6?±?2.43)%, respectively. In vitro release studies indicated that the TET-CNP and TET-NP retained the drug entity better than tetrandrine ophthalmic solutions (TET-SOL). In the pharmacokinetics studies, the AUC values of TET-CNP and TET-NP were 1.96-fold and 2.00-fold higher than that of TET-SOL (?p?Cmax values of TET-CNP and TET-NP were 2.45-fold and 2.53-fold higher than that of the TET-SOL (p?相似文献   

20.
本文通过一种新的合成路线合成了二茂铁功能化的氧化石墨烯(GO-EDA-Fc)。利用傅里叶变换红外光谱和扫描电子显微镜对其结构和形貌进行了表征。通过热重分析(TGA)研究了其对高氯酸铵(AP)热分解的催化性能,结果表明,氧化石墨烯和二茂铁表现出很好的协同催化效果,对AP热分解具有高的催化活性。催化效果随着GO-EDA-Fc加入量的增加而增强,当加入4wt%的GO-EDA-Fc时,AP的高温分解峰的峰值温度下降了60℃,低温分解峰的峰值也有降低。文中还对催化机制进行了研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号