首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ranitidine hydrochloride is a H(2) receptor blocker used in the treatment of gastric ulcers. Pharmacological factors, in addition to the dosage regimen, favor development of a sustained-release system for ranitidine especially in the therapeutic condition of erosive esophagitis. This investigation delves into the development of bioadhesive type of gastroretentive formulation (tablets) of ranitidine. The effect of mucoadhesive polymers such as Carbopol, hydroxypropyl methyl cellulose, and dextrose were studied. Mucoadhesion, in vitro drug release profile, water uptake, and swelling of the tablet were evaluated. Alkalizing agents were incorporated in an attempt to maintain an alkaline microenvironment within the tablet and improve the stability of the drug in acidic medium. The stability was evaluated using dye test and degradation studies. The drug release profiles were fit into various kinetic models.  相似文献   

2.
The effects of temperature and humidity on tablets containing Kollidon® SR have been evaluated using diphenhydramine HCl as a model drug. Exposure of tablets to ICH accelerated stability condition (40°C/75%RH) in an open dish resulted in rapid increases in tablet hardness, accompanied by step‐wise decreases in dissolution rate. Such a change can be observed as fast as an hour upon exposure. The tablet matrix appears to rapidly absorb atmospheric moisture, as demonstrated by tablet weight gain and moisture adsorption isotherms. Exposure to 25°C/60%RH similarly resulted in increases in tablet hardness, although with minimal impact on dissolution. Potential implications of such rapid moisture uptake during aqueous film‐coating were further evaluated by spraying either water or an Opadry solution in a coating pan. Exposure of Kollidon SR tablets to the aqueous coating process indeed resulted in noticeable changes in both hardness and dissolution. Application of the Opadry solution appears to affect tablet behavior to a lesser degree, compared to water, most likely due to protection via formed barrier film. Attention needs to be paid to the extreme sensitivity of Kollidon SR matrix tablets to temperature and moisture during product development.  相似文献   

3.
The effects of temperature and humidity on tablets containing Kollidon® SR have been evaluated using diphenhydramine HCl as a model drug. Exposure of tablets to ICH accelerated stability condition (40°C/75%RH) in an open dish resulted in rapid increases in tablet hardness, accompanied by step-wise decreases in dissolution rate. Such a change can be observed as fast as an hour upon exposure. The tablet matrix appears to rapidly absorb atmospheric moisture, as demonstrated by tablet weight gain and moisture adsorption isotherms. Exposure to 25°C/60%RH similarly resulted in increases in tablet hardness, although with minimal impact on dissolution. Potential implications of such rapid moisture uptake during aqueous film-coating were further evaluated by spraying either water or an Opadry solution in a coating pan. Exposure of Kollidon SR tablets to the aqueous coating process indeed resulted in noticeable changes in both hardness and dissolution. Application of the Opadry solution appears to affect tablet behavior to a lesser degree, compared to water, most likely due to protection via formed barrier film. Attention needs to be paid to the extreme sensitivity of Kollidon SR matrix tablets to temperature and moisture during product development.  相似文献   

4.
The aim of the work presented is to prepare a controlled-release hydrophilic matrix tablet (CMT) controlling release of highly water-soluble drug applying pure combination of high- and low-Mw PEO as matrix materials, to avoid the lag time of drug release, and to overcome incomplete release in later stages. The influences of types and amounts of different Mw PEOs used, drug loading, pH of release medium and agitation rate on drug release were evaluated. The study of uptake and erosion of matrix was conducted and mechanism of improving drug release was discussed. In vivo pharmacokinetics of the CMT and reference preparation self-made controlled-release osmotic pump tablets (COPT) were performed in beagle dogs. The optimized formulation containing 43% PEO WSR 303 and 32% PEO N750 showed a zero order release from 1?h to 12?h. In vivo results demonstrated that the CMT had similar AUC0-48?h and Cmax with the COPT but smaller Tmax than the COPT and provided a more stable therapeutic concentration compared to the COPT. In conclusion, hydrophilic matrix tablet combining only different Mw PEOs as matrix materials had very good potential to be developed into a controlled-release drug delivery system for highly water-soluble drug. Besides, its manufacturing processes were succinct which would be preferable for modern medicine industry.  相似文献   

5.
Context: Hydrophilic and hydrophobic polymer-based nicorandil (10 mg)-loaded peroral tablets were prepared using the wet granulation technique. The influence of varying amounts of hydroxypropyl methylcellulose (HPMC) (30–50 mg), ethylcellulose (2–4 mg), microcrystalline cellulose (5–20 mg) and Aerosil® (5–12 mg) in conjunction with the constant amounts (3 mg) of glidant and lubricant (magnesium stearate and talc) on the in vitro performances of the tablets (hardness, friability, weight variation, thickness uniformity, drug content, and drug release behavior) were investigated. Objective: The objectives of this study were (i) to select a nicorandil-loaded peroral tablet that matched the in vitro dissolution profile of once-daily commercial sustained-release tablet, and (ii) to compare the in vivo sustaining/controlling efficacy of the selected peroral tablet with that of its commercial counterparts. Results and Discussion: Because the nicorandil (10 mg)-loaded tablet prepared based on F-IX composition (50 mg HPMC, 4 mg ethylcellulose, 10 mg MCC and 3 mg glidant and lubricant) showed a release profile comparable to that of the Nikoran® OD SR tablet release profile, the tablet with this composition was considered to be the optimized/selected formulation and, therefore, was subjected to stability study and in vivo study in rabbits. Despite of the higher Cmax and AUC values obtained with the optimized tablet, there was no sign of difference between the optimized- and Nikoran® OD SR- tablets following a single-dose crossover oral administration into rabbit. Conclusion: The optimized tablet could be used as an alternative to the commercial once-daily tablet.  相似文献   

6.
Abstract

The purpose of this investigation was to study the drug release mechanisms for tablet matrices of carbomer. Carbomer is a polymer of acrylic acid which is cross-linked with polyalkenyl polyether. The drug and the carbomer were blended and directly compressed into tablets using a laboratory Carver press. The influence of the level of carbomer, the type of drug, and the pH of dissolution media were investigated by measuring drug release kinetics. In general, the release of a relatively neutral molecule (e.g. theophylline) in the pH 7.2 phosphate buffer solution appears to exhibit nearly zero-order kinetics via a diffusion-controlled mechanism for all polymer levels studied (10-85%).

The drug release process based on diffusion can be described by the general expression:

Mt = k1t1/2 + k2t

where M, represents the amount of the drug released at time t, and k1, k2 are related to kinetic constants characteristic of the drug delivery systems. The release kinetics are modified when an ionic species, such as sodium salicylate, is incorporated into the tablet matrix.  相似文献   

7.
This study investigated the possible utility of trehalose dihydrate (TD) as a tablet stabilizing agent. Acetylsalicylic acid was used as the model hydrolyzable drug and dicalcium phosphate dihydrate (DCPD) as the base excipient, because it is well documented that ASA/DCPD tablets are unstable during storage at low temperature and high relative humidity; DCPD is usually combined with mannitol in order to improve tablet stability.

Tablets comprising DCPD, 10% ASA, and 0%, 10%, or 20% w/w of TD were prepared by direct compression and stored at 35°C and 82.9% relative humidity for 6 months. Additionally, control tablets with DCPD and ASA, only, or with DCPD, ASA and 20% mannitol, were also evaluated. At predetermined time intervals, formulations were tested for drug content, mechanical, microstructural, and drug dissolution properties. Additionally, thermal analyses and ASA solution stability studies were carried out. Results reveal that both TD and mannitol significantly reduce degradation of ASA included in DCPD-based tablets, but neither effectively protects against the marked decline in tablet mechanical properties on aging. The ASA stabilization effects of TD and mannitol were also observed in solution, indicating an interaction between these sugars and ASA.  相似文献   

8.
Abstract

Floating tablets of pregabalin were prepared using different concentrations of the gums (xanthan gum and guar gum), Carbopol 974P NF and HPMC K100. Optimized formulations were studied for physical tests, floating time, swelling behavior, in vitro release studies and stability studies. In vitro drug release was higher for tablet batches containing guar and xanthan gum as compared to the batches containing Carbopol 974P NF. Tablet batches were subjected to stability studies and evaluated by different parameters (drug release, drug content, FTIR and DSC studies). The optimized tablet batch was selected for in vivo pharmacodynamic studies (PTZ induced seizures). The results obtained showed that the onset of jerks and clonus were delayed and extensor phase was abolished with time in treated groups. A significant difference (p?>?0.05) was observed in control and treated group behavior indicating an excellent activity of the formulation for a longer period (>12?h).  相似文献   

9.
A robust experimental design method was developed with the well-established response surface methodology and time series modeling to facilitate the formulation development process with magnesium stearate incorporated into hydrophilic matrix tablets. Two directional analyses and a time-oriented model were utilized to optimize the experimental responses. Evaluations of tablet gelation and drug release were conducted with two factors x(1) and x(2): one was a formulation factor (the amount of magnesium stearate) and the other was a processing factor (mixing time), respectively. Moreover, different batch sizes (100 and 500 tablet batches) were also evaluated to investigate an effect of batch size. The selected input control factors were arranged in a mixture simplex lattice design with 13 experimental runs. The obtained optimal settings of magnesium stearate for gelation were 0.46 g, 2.76 min (mixing time) for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The optimal settings for drug release were 0.33 g, 7.99 min for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The exact ratio and mixing time of magnesium stearate could be formulated according to the resulting hydrophilic matrix tablet properties. The newly designed experimental method provided very useful information for characterizing significant factors and hence to obtain optimum formulations allowing for a systematic and reliable experimental design method.  相似文献   

10.
This study investigated the possible utility of trehalose dihydrate (TD) as a tablet stabilizing agent. Acetylsalicylic acid was used as the model hydrolyzable drug and dicalcium phosphate dihydrate (DCPD) as the base excipient, because it is well documented that ASA/DCPD tablets are unstable during storage at low temperature and high relative humidity; DCPD is usually combined with mannitol in order to improve tablet stability. Tablets comprising DCPD, 10% ASA, and 0%, 10%, or 20% w/w of TD were prepared by direct compression and stored at 35 degrees C and 82.9% relative humidity for 6 months. Additionally, control tablets with DCPD and ASA, only, or with DCPD, ASA and 20% mannitol, were also evaluated. At predetermined time intervals, formulations were tested for drug content, mechanical, microstructural, and drug dissolution properties. Additionally, thermal analyses and ASA solution stability studies were carried out. Results reveal that both TD and mannitol significantly reduce degradation of ASA included in DCPD-based tablets, but neither effectively protects against the marked decline in tablet mechanical properties on aging. The ASA stabilization effects of TD and mannitol were also observed in solution, indicating an interaction between these sugars and ASA.  相似文献   

11.
This article reports the exploitation of novel hydrophilic excipient, that is, mucilage from Hibiscus rosasinensis Linn, for the development of sustained release tablet. Swelling ratio and flow properties analyses of dried mucilage powder were carried out. A 32 full factorial design was used. In factorial design, amounts of dried mucilage and dibasic calcium phosphate (DCP) were taken as independent factors and percentage drug release in 60 and 300 min and time for 80% drug release as dependent variables. Matrix tablet containing dried mucilage and diclofenac sodium (DS) was prepared through direct compression techniques. DS tablets were evaluated for hardness, friability, weight variation, in vitro drug release and water uptake, and mass loss study. The dried mucilage powder shows superior swelling capacity and excellent flow properties. Prepared tablets have acceptable hardness, friability, and uniformity in weight. It was found that batch HD8 fulfills all selected criteria. Drug release kinetics from these formulations corresponded best to the zero-order kinetics. Water uptake was independent whereas mass loss was dependent on agitation speed. The concept of similarity factor (f2) was used to prove similarity of dissolution profile in distilled water and phosphate buffer and was found to be 90.68. It was concluded that mucilage can be used as release-retarding agent for 12 h when the drug–mucilage ratio was 1:1.5. So, matrix tablet containing dried mucilage is most suitable for sustained release of DS.  相似文献   

12.
Abstract

Deformation and compaction characteristics of two soluble drugs, ascorbic acid and potassium chloride, were investigated. Five different particle size fractions of ascorbic acid with mean particle size (d50) ranging from 30–300μm and four different particle size fractions of potassium chloride with d50 ranging from 20–400 μm were selected in the study. The compaction behavior of the drug substances as neat drugs or as granulated drugs were evaluated on both a Carver press and an instrumented single-punch tablet press. The results clearly show that mean particle size of the drug substances plays an important role in their compactibility. Intrinsic compactibility of both drug substances was slightly improved with increased particle size. Granulations of the drugs with polyvinyl pyrrolidone significantly improved their compactibility. However, this effect was more pronounced in the drug substance with finer particle size. The Heckel plots indicate that deformation characteristics of both granulated drugs were related to their original mean particle sizes. The granulations prepared from the coarser particle size (d50 250 μm to 400 μm) underwent two stages of deformation, so-called “brittle fracture” and “plastic deformation”. While the granulations prepared from the finer particle size predoninantly underwent “plastic deformation”. The results indicated that the plastic deformation of both granulated drugs was progressively enhanced whilst fragmentation of particles was correspondingly reduced as the particle size of the drugs was decreased. Scanning electron photomicrographs indicated that the granulation process changed the surface morphology of the drug particles imparting more “microirregularities” or “defects”, thereby providing greater “interparticulate bonding” as compared with the neat drugs. Optimum particle size range of ascorbic acid and potassium chloride for satisfactory compactibility was found to be 30–40 μm and 20–40 μm, respectively. The present study demonstrates the importance of selecting the appropriate particle size of drug for the development of tablet dosage forms.  相似文献   

13.
Abstract

The study described herein was undertaken to simultaneously optimize the composition of tablet and capsule formulation of an insoluble experimental drug, and to learn more about the effect of the interaction between the ingredients on the basic properties of the final dosage form. Four independent variables were varied in a set of statistically designed experiments, and a number of properties evaluated. A substantial saving in development time and quantity of drug was thereby achieved.  相似文献   

14.
Bioadhesive tablets were prepared by physical mixing of polymers and drug, then granulating and compressing into a tablet. The mucoadhesion was evaluated by shear stress measurement, detachment force measurement, and X-ray photography of the rabbit gastrointestinal tract. The strong interaction between the polymer and the mucous lining of the tissue helps increase contact time and permit localization. Polymers like hydroxypropyl methylcellulose K4M (HPMC K4M), hydroxypropyl methylcellulose 100 cps (HPMC 100 cps), carbopol-934, sodium carboxy methylcellulose (Na CMC), guar gum, and polyvinylpyrrolidone (PVP) were tested by shear stress measurement and detachment force measurement methods. HPMC K4M, showing maximum bioadhesion, was used in further studies. Adhesion was maximum between pH 5 and pH 6. Maximum adhesion was observed in the duodenum, followed by the jejunum and ileum. Barium sulfate (BaSO4) matrix tablets containing polymer and drug were subjected to X-ray studies in rabbits, and it was found that the tablet was mucoadhesive even after 8 hr. Enteric coating did not show any effect on mucoadhesion after passing from the stomach.  相似文献   

15.
During the development of a tablet formulation, a solvent capable of extracting 100% of the drug from the tablet excipients must be identified as part of the analytical assay method. When a low drug recovery from a tablet is observed with the assay method, it must be determined whether a problem with the manufacturing process exists, or if the extraction of the drug was incomplete. A solvent screen study was conducted with CP-122,721 prototype formulations to select a robust solvent for the assay method. However, low tablet assay values (ca. 95%) were routinely observed during tablet formulation development and process scale up. Drug-excipient interactions in a variety of solvents were subsequently evaluated to confirm the selection of the extraction solvent as capable of 100% extraction. At this point the focus of the investigation was placed on process-related sources of low recovery, such as loss of drug to manufacturing equipment and/or segregation during the tableting process. The results suggest that the low drug recovery observed for the CP-122,721 tablets was due to segregation during the manufacture, while the selected extraction solvent was able to eliminate any interactions between CP-122,721 and the tablet excipients.  相似文献   

16.
A new mineral–polymer composite (FCC-PCL) performance was assessed to produce complex geometries to aid in development of controlled release tablet formulations. The mechanical characteristics of a developed material such as compactibility, compressibility and elastoplastic deformation were measured. The results and comparative analysis versus other common excipients suggest efficient formation of a complex, stable and impermeable geometries for constrained drug release modifications under compression. The performance of the proposed composite material has been tested by compacting it into a geometrically altered tablet (Tablet-In-Cup, TIC) and the drug release was compared to commercially available product. The TIC device exhibited a uniform surface, showed high physical stability, and showed absence of friability. FCC-PCL composite had good binding properties and good compactibility. It was possible to reveal an enhanced plasticity characteristic of a new material which was not present in the individual components. The presented FCC-PCL composite mixture has the potential to become a successful tool to formulate controlled-release dosage solid forms.  相似文献   

17.
The objective of this study was to develop an effective omeprazole buccal adhesive tablet with excellent bioadhesive force and good drug stability in human saliva. The omeprazole buccal adhesive tablets were prepared with various bioadhesive polymers, alkali materials, and croscarmellose sodium. Their physicochemical properties, such as bioadhesive force and drug stability in human saliva, were investigated. The release and bioavailability of omeprazole delivered by the buccal adhesive tablets were studied. As bioadhesive additives for the omeprazole tablet, a mixture of sodium alginate and hydroxypropylmethylcellulose (HPMC) was selected. The omeprazole tablets prepared with bioadhesive polymers alone had bioadhesive forces suitable for a buccal adhesive tablet, but the stability of omeprazole in human saliva was not satisfactory. Among alkali materials, only magnesium oxide could be an alkali stabilizer for omeprazole buccal adhesive tablets due to its strong waterproofing effect. Croscarmellose sodium enhanced the release of omeprazole from the tablets; however, it decreased the bioadhesive forces and stability of omeprazole tablets in human saliva. The tablet composed of omeprazole/sodium alginate/HPMC/magnesium oxide/croscarmellose sodium (20/24/6/50/10 mg) could be attached on the human cheek without disintegration, and it enhanced the stability of omeprazole in human saliva for at least 4 h and gave fast release of omeprazole. The plasma concentration of omeprazole in hamsters increased to a maximum of 370 ng/ml at 45 min after buccal administration and continuously maintained a high level of 146–366 ng/ml until 6 h. The buccal bioavailability of omeprazole in hamsters was 13.7% ± 3.2%. These results demonstrate that the omeprazole buccal adhesive tablet would be useful for delivery of an omeprazole that degrades very rapidly in acidic aqueous medium and undergoes hepatic first-pass metabolism after oral administration.  相似文献   

18.
Objective: The objective of present investigation was to evaluate performance of cocrystals of Mefloquine Hydrochloride (MFL) in tablet dosage form. Our previous investigation showed significant effect of cocrystal formers on improving the solubility and dissolution rate of Mefloquine hydrochloride by cocrystallization method when prepared by solution cocrystallization method.

Materials and methods: Prepared cocrystals of MFL with different ratio of cocrystal formers were incorporated in tablet dosage form and evaluated for micrometric properties, drug content, hardness, disintegration test, vitro dissolution studies and stability studies. Performance was compared with laboratory prepared tablet of MFL 250 mg.

Results: The considerable improvement in the dissolution rate was observed in case of cocrystals based tablets than pure MFL tablets.

Discussion and conclusion: So we can incorporate cocrystals in tablet dosage form to enhance in vitro and in vivo performance. To the best of our knowledge, this is the first report, cocrystals has been evaluated in tablet dosage form.  相似文献   

19.
The objective of this study was to develop an effective omeprazole buccal adhesive tablet with excellent bioadhesive force and good drug stability in human saliva. The omeprazole buccal adhesive tablets were prepared with various bioadhesive polymers, alkali materials, and croscarmellose sodium. Their physicochemical properties, such as bioadhesive force and drug stability in human saliva, were investigated. The release and bioavailability of omeprazole delivered by the buccal adhesive tablets were studied. As bioadhesive additives for the omeprazole tablet, a mixture of sodium alginate and hydroxypropylmethylcellulose (HPMC) was selected. The omeprazole tablets prepared with bioadhesive polymers alone had bioadhesive forces suitable for a buccal adhesive tablet, but the stability of omeprazole in human saliva was not satisfactory. Among alkali materials, only magnesium oxide could be an alkali stabilizer for omeprazole buccal adhesive tablets due to its strong waterproofing effect. Croscarmellose sodium enhanced the release of omeprazole from the tablets; however, it decreased the bioadhesive forces and stability of omeprazole tablets in human saliva. The tablet composed of omeprazole/sodium alginate/HPMC/magnesium oxide/croscarmellose sodium (20/24/6/50/10 mg) could be attached on the human cheek without disintegration, and it enhanced the stability of omeprazole in human saliva for at least 4 h and gave fast release of omeprazole. The plasma concentration of omeprazole in hamsters increased to a maximum of 370 ng/ml at 45 min after buccal administration and continuously maintained a high level of 146-366 ng/ml until 6 h. The buccal bioavailability of omeprazole in hamsters was 13.7% ± 3.2%. These results demonstrate that the omeprazole buccal adhesive tablet would be useful for delivery of an omeprazole that degrades very rapidly in acidic aqueous medium and undergoes hepatic first-pass metabolism after oral administration.  相似文献   

20.
The main purpose of current investigation is to prepare a self-microemulsifying drug delivery system (SMEDDS) to enhance the oral bioavailability of vinpocetine, a poorly water-soluble drug. Suitable vehicles were screened by determining the solubility of vinpocetine in them. Certain surfactants were selected according to their emulsifying ability with different oils. Ternary phase diagrams were used to identify the efficient self-microemulsifying region and to screen the effect of surfactant/cosurfactant ratio (Km). The optimized formulation for in vitro dissolution and bioavailability assessment was oil (ethyl oleate, 15%), surfactant (Solutol HS 15, 50%), and cosurfactant (Transcutol® P, 35%). The release rate of vinpocetine from SMEDDS was significantly higher than that of the commercial tablet. Pharmacokinetics and bioavailability of SMEDDS were evaluated. It was found that the oral bioavailability of vinpocetine of SMEDDS was 1.72-fold higher as compared with that of the commercial tablet. These results obtained demonstrated that vinpocetine absorption was enhanced significantly by employing SMEDDS. Therefore, SMEDDS might provide an efficient way of improving oral bioavailability of poorly water-soluble drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号