首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Background: Oxycellulose (OC) is biodegradable and bioabsorbable cellulose derivative used in medicine to support hemostasis and tissue healing. Recently, its antimicrobial and immunomodulating properties, as well as its potential in modern therapeutic systems as release modifying excipient, drug carrier, and/or mucoadhesive polymer, are widely discussed. Method: To study its last-mentioned characteristics, directly compressed tablets containing 5 mg of cetylpyridinium chloride (CPC) as a model drug and 90 mg of mucoadhesive polymer [oxycellulose sodium (NaOC) alone or in a combination with one of five widely used mucoadhesive polymers] were prepared to ensure 8 hours prolonged release of CPC. Physicochemical and mucoadhesive properties of prepared tablets were evaluated. Results: Based on obtained results, tablets containing OC in combination with hydroxypropylmethylcellulose (Methocel® K100LV) or carboxymethylcellulose sodium showed the best quality parameters (friability < 0.04%, tablet thickness < 2.17 mm, tablet hardness > 85 N, residence time > 256 minutes, mucoadhesive strength > 3.45 mN/mm) and dissolution profiles (more than 81% of CPC released within 8 hours). Conclusion: NaOC embodies excellent compressing, mechanical, and mucoadhesive properties; however, formulation with higher content of NaOC only showed shorter adhesion time (107 ± 7 minutes) and faster drug release (93.66% of CPC released within 2 hours), because of its good solubility in aqueous media.  相似文献   

2.
Cellulose derivatives are the most frequently used polymers in formulations of pharmaceutical products for controlled drug delivery. The main aim of the present work was to evaluate the effect of different cellulose substitutions on the release rate of ibuprofen (IBP) from hydrophilic matrix tablets. Thus, the release mechanism of IBP with methylcellulose (MC25), hydroxypropylcellulose (HPC), and hydroxypropylmethylcellulose (HPMC K15M or K100M) was studied. In addition, the influence of the diluents lactose monohydrate (LAC) and β-cyclodextrin (β-CD) was evaluated. Distinct test formulations were prepared containing: 57.14% of IBP, 20.00% of polymer, 20.29% of diluent, 1.71% of talc lubricants, and 0.86% of magnesium stearate as lubricants. Although non-negligible drug-excipient interactions were detected from DSC studies, these were found not to constitute an incompatibility effect. Tablets were examined for their drug content, weight uniformity, hardness, thickness, tensile strength, friability, porosity, swelling, and dissolution performance. Polymers MC25 and HPC were found to be unsuitable for the preparation of this kind of solid dosage form, while HPMC K15M and K100M showed to be advantageous. Dissolution parameters such as the area under the dissolution curve (AUC), the dissolution efficiency (DE20 h), dissolution time (t 50%), and mean dissolution time (MDT) were calculated for all the formulations, and the highest MDT values were obtained with HPMC indicating that a higher value of MDT signifies a higher drug retarding ability of the polymer and vice-versa. The analysis of the drug release data was performed in the light of distinct kinetic mathematical models—Kosmeyer-Peppas, Higuchi, zero-, and first-order. The release process was also found to be slightly influenced by the kind of diluent used.  相似文献   

3.
Background: Hydrophilic matrix formulations are important and simple technologies that are used to manufacture sustained release dosage forms. Method: Hydroxypropyl methylcellulose-based matrix tablets, with and without additives, were manufactured to investigate the rate of hydration, rate of erosion, and rate and mechanism of drug release. Scanning electron microscopy was used to assess changes in the microstructure of the tablets during drug release testing and whether these changes could be related to the rate of drug release from the formulations. Results: The results revealed that the rate of hydration and erosion was dependent on the polymer combination(s) used, which in turn affected the rate and mechanism of drug release from these formulations. It was also apparent that changes in the microstructure of matrix tablets could be related to the different rates of drug release that were observed from the test formulations. Conclusion: The use of scanning electron microscopy provides useful information to further understand drug release mechanisms from matrix tablets.  相似文献   

4.
Selected combinations of six model drugs and four hypromellose (USP 2208) viscosity grades were studied utilizing direct compression and in vitro dissolution testing. Experimental HPMC samples with differing particle size distributions (coarse, fine, narrow, bimodal) were generated by sieving. For some formulations, the impact of HPMC particle size changes was characterized by faster drug release and an apparent shift in drug release mechanism when less than 50% of the HPMC passed through a 230 mesh (63 μm) screen. Within the ranges studied, drug release from other formulations appeared to be unaffected by HPMC particle size changes.  相似文献   

5.
Objective: The aim of the present investigation was to evaluate the use of spray-dried O-carboxymethyl chitosan (OCMCS) as potential hydrophilic matrix excipient for sustained release of drug.

Methods: The polymer was synthesized from chitosan, then spray-dried and characterized. Tablets with different OCMCS concentrations (80, 50, 30, 5 and 2% w/w), containing diltiazem (DTZ) as model drug, were prepared for direct compression (DC) and after the wet granulation method (WG).

Results: The spray-dried OCMCS powder was spherical, with a smooth surface and an average size of 2.2?µm. The tablets prepared for WG disintegrated in time less than 30?min. The tablets obtained for DC presented high retention of the drug, with zero order or Higuchi release kinetic. There was a direct relationship between the OCMCS concentration and the release ratio, swelling degree and water uptake behavior. DC tablets containing 80% OCMCS presented behavior as an effective swelling-control system. The DC tablets with 5% OCMCS showed a similar release profile at formulations with 30% HPMC.

Conclusion: Spray-dried OCMCS showed great potential as hydrophilic matrices for drug-sustained release.  相似文献   

6.
The effect of cellulose ether polymer mixtures, containing both hydroxypropylcellulose (HPC) and hydroxypropylmethylcellulose (HPMC K15M or K100M), on ketoprofen (KTP) release from matrix tablets was investigated. In order to evaluate the compatibility between the matrix components, Raman spectroscopy, scanning electron microscopy (SEM), and X-ray powder diffraction (XRPD) experiments were performed. The results evidence the absence of significant intermolecular interactions that could eventually lead to an incompatibility between the drug and the different excipients. Formulations containing mixtures of polymers with both low and high viscosity grades were prepared by a direct compression method, by varying the polymer/polymer (w/w) ratio while keeping the drug amount incorporated in the solid dispersion constant (200?mg). The hardness values of different matrices were found within the range 113.8 to 154.9 N. HPLC analysis showed a drug content recovery between 99.3 and 102.1%, indicating that no KTP degradation occurred during the preparation process. All formulations attained a high hydration degree after the first hour, which is essential to allow the gel layer formation prior to tablet dissolution. Independent-model dissolution parameters such as t10% and t50% dissolution times, dissolution efficiency (DE), mean dissolution time (MDT), and area under curve (AUC) were calculated for all formulations. Zero-order, first-order, Higuchi, and Korsmeyer–Peppas kinetic models were employed to interpret the dissolution profiles: a predominantly Fickian diffusion release mechanism was obtained – with Korsmeyer–Peppas exponent values ranging from 0.216 to 0.555. The incorporation of HPC was thus found to play an essential role as a release modifier from HPMC containing tablets.  相似文献   

7.
Drug load plays an important role in the development of solid dosage forms, since it can significantly influence both processability and final product properties. The percolation threshold of the active pharmaceutical ingredient (API) corresponds to a critical concentration, above which an abrupt change in drug product characteristics can occur. The objective of this study was to identify the percolation threshold of a poorly water-soluble drug with regard to the dissolution behavior from immediate release tablets. The influence of the API particle size on the percolation threshold was also studied. Formulations with increasing drug loads were manufactured via roll compaction using constant process parameters and subsequent tableting. Drug dissolution was investigated in biorelevant medium. The percolation threshold was estimated via a model dependent and a model independent method based on the dissolution data. The intragranular concentration of mefenamic acid had a significant effect on granules and tablet characteristics, such as particle size distribution, compactibility and tablet disintegration. Increasing the intragranular drug concentration of the tablets resulted in lower dissolution rates. A percolation threshold of approximately 20% v/v could be determined for both particle sizes of the API above which an abrupt decrease of the dissolution rate occurred. However, the increasing drug load had a more pronounced effect on dissolution rate of tablets containing the micronized API, which can be attributed to the high agglomeration tendency of micronized substances during manufacturing steps, such as roll compaction and tableting. Both methods that were applied for the estimation of percolation threshold provided comparable values.  相似文献   

8.
Purpose: Damar Batu (DB) is a novel film-forming biomaterial obtained from Shorea species, evaluated in this study for its potential application in transdermal drug delivery system. Methods: DB was characterized initially in terms of acid value, softening point, molecular weight (Mw), polydispersity index (Mw/Mn), and glass transition temperature (Tg). Neat, plasticized films of DB were investigated for mechanical properties. The biomaterial was further investigated as a matrix-forming agent for transdermal drug delivery system. Developed matrix-type transdermal patches were evaluated for thickness and weight uniformity, folding endurance, drug content, in vitro drug release study, and skin permeation study. Results: On the basis of in vitro drug release and in vitro skin permeation performance, formulation containing DB/Eudragit RL100 (60 : 40) was found to be better than other formulations and was selected as the optimized formulation. IR analysis of physical mixture of drug and polymer and thin layer chromatography study exhibited compatibility between drug and polymer. Conclusion: From the outcome of this study, it can be concluded that applying suitable adhesive layer and backing membrane-developed DB/ERL100, transdermal patches can be of potential therapeutic use.  相似文献   

9.
An experimental investigation into the use of a hydrophobic matrix to control the release of a highly water soluble drug was undertaken. Matrices consisting of hydrogenated vegetable oil and calcium sulfate with a 4% drug loading showed a sustained-release profile of up to 24 hr. The release mechanism from such matrices seemed to obey both root time kinetics and first-order behavior. Investigations showed that the effect of geometry had a significant effect on the drug release rate.  相似文献   

10.
A polysaccharide mucilage derived from the seeds of fenugreek, Trigonella foenum-graceum L (family Fabaceae) was investigated for use in matrix formulations containing propranolol hydrochloride. Methocel® hypomellose K4M was used as a standard controlled release polymer for comparison purposes. In this study the effect of lactose on the release behaviour of propranolol hydrochloride from matrices formulated to contain the fenugreek mucilage also was investigated. An increase in concentration of the mucilage in matrices resulted in a reduction in the release rate of propranolol hydrochloride comparable to that observed with hypomellose matrices. The rate of release of propranolol hydrochloride from fenugreek mucilage matrices was mainly controlled by the drug:mucilage ratio. However, the mechanism of release from matrices containing drug:mucilage ratios of 1:1, 1:1.25, 1:1.5, and 1:2 remained the same. The kinetics of release, utilising the release exponent n, showed that the values of n were between 0.46-0.57 indicating that the release from fenugreek mucilage matrices was predominantly by diffusion. The presence of lactose in matrices containing mucilage increased the release rate of propranolol hydrochloride. This is due to a reduction in tortuoisity and increased pore size of channels caused by lactose through which propranolol diffuses and therefore diffusion of water into the tablet is facilitated.  相似文献   

11.
Objective: To develop a polymer matrix for controlled release of drugs, chitosan, a linear aminopolysaccharide, was chemically modified to dithiocarbamate chitosan (DTCC) to afford a matrix where metal–drug complexes could be attached and released in a controlled manner depending on the binding nature between the drugs and the metals.

Materials and methods: DTCC was treated with metal-tetracycline (Tc) complexes to prepare DTCC–Ca(II)–Tc, DTCC–Mg(II)–Tc, DTCC–Cu(II)–Tc and DTCC–Zn(II)–Tc.

Results: The binding amount of Tc was in the order of DTCC–Zn(II)–Tc?≈?DTCC–Mg(II)–Tc?≈ DTCC–Ca(II)–Tc?>?DTCC–Cu(II)–Tc. The biphasic binding profiles, where Tc binding increased initially and then decreased, were shown for DTCC–Cu(II)–Tc and DTCC–Zn(II)–Tc. In a flow method, Tc was released slowly from DTCC–metal–Tc complexes except for DTCC–Cu(II)–Tc compared with Tc release from DTCC–Tc. In parallel with the results of the release experiment, DTCC–metal–Tc complexes except for DTCC–Cu(II)–Tc presented a prolonged antibacterial activity in an antibacterial test. The antibacterial activity of DTCC–Ca(II)–, –Mg(II)– and –Zn(II)–Tc complexes lasted for 28–44 days, while free Tc and DTCC–Tc lasted for 7–12 days.

Discussion and conclusion: Taken together, our data suggest that DTCC could be used for a polymeric matrix for controlled release of drugs such as Tc, which possess functional groups for ionic and/or coordinate bond with metals.  相似文献   

12.
Three different molecularly imprinted polymers (MIPs) for drug delivery of diclofenac in gastrointestinal tract were synthesized employing bulk polymerization method and their binding and release properties were studied in different pH values. Methacrylic acid (MAA), methacrylamide (MAAM) and 4-vinyl pyridine (4VP) were tested as functional monomers and ethylene glycole dimethacrylate (EDMA) was used as a cross-linker monomer in polymeric feed. Binding properties and imprinting factor (IF) of MIPs were studied in comparison with their non-imprinted ones (Blank) in organic and aqueous media. Diclofenac release in aqueous solvents at pH values of 1.5, 6.0 and 8.0, simulating gastrointestinal fluids, were also studied. The results indicated the specific binding of diclofenac to imprinted polymers. Duo to the stronger non-specific bounds in aqueous solutions, IF values decreased in water compared to acetonitrile as an organic medium. Our results proved that all polymers represented pH-responsive diclofenac delivery at above conditions. The data showed that imprinted polymer, prepared by MAA had superior properties, in comparison with other polymers, for minimum release (14%) of drug in gastric acid and maximum release (90%) in basic condition. The results indicated that diclofenac imprinted polymer could be used as a pH-responsive matrix in preparation of a new drug delivery system for diclofenac.  相似文献   

13.
The aim of the work presented is to prepare a controlled-release hydrophilic matrix tablet (CMT) controlling release of highly water-soluble drug applying pure combination of high- and low-Mw PEO as matrix materials, to avoid the lag time of drug release, and to overcome incomplete release in later stages. The influences of types and amounts of different Mw PEOs used, drug loading, pH of release medium and agitation rate on drug release were evaluated. The study of uptake and erosion of matrix was conducted and mechanism of improving drug release was discussed. In vivo pharmacokinetics of the CMT and reference preparation self-made controlled-release osmotic pump tablets (COPT) were performed in beagle dogs. The optimized formulation containing 43% PEO WSR 303 and 32% PEO N750 showed a zero order release from 1?h to 12?h. In vivo results demonstrated that the CMT had similar AUC0-48?h and Cmax with the COPT but smaller Tmax than the COPT and provided a more stable therapeutic concentration compared to the COPT. In conclusion, hydrophilic matrix tablet combining only different Mw PEOs as matrix materials had very good potential to be developed into a controlled-release drug delivery system for highly water-soluble drug. Besides, its manufacturing processes were succinct which would be preferable for modern medicine industry.  相似文献   

14.
Pyridostigmine bromide (PB), a highly hygroscopic drug was selected as the model drug. A sustained-release (SR) tablet prepared by direct compression of wet-extruded and spheronized core pellets with HPMC excipients and exhibited a zero-order sustained release (SR) profile. The 23 full factorial design was utilized to search an optimal SR tablet formulation. This optimal formulation was followed zero-order mechanism and had specific release rate at different time intervals (released % of 1, 6, and 12 hr were 15.84, 58.56, and 93.10%). The results of moisture absorption by Karl Fischer meter showed the optimum SR tablet could improve the hygroscopic defect of the pure drug (PB). In the in vivo study, the results of the bioavailability data showed the Tmax was prolonged (from 0.65 ± 0.082 hr to 4.83 ± 1.60 hr) and AUC0-t (from 734.88 ± 230.68 ng/ml.hr to 1153.34 ± 488.08 ng/ml.hr) and was increased respectively for optimum PB-SR tablets when compared with commercial immediate release (IR) tablets. Furthermore, the percentages of in vitro dissolution and in vivo absorption in the rabbits have good correlation. We believe that PB-SR tablets designed in our study would improve defects of PB, decrease the frequency of administration and enhance the retention period of drug efficacy in vivo for personnel exposed to contamination situations in war or terrorist attacks in the future.  相似文献   

15.
Pyridostigmine bromide (PB) sustained-release (SR) pellets were developed by extrusion-spheronization and fluid-bed methods using Taguchi experimental and 23 full factorial design. In vitro studies, the 23 full factorial design was utilized to search for the optimal SR pellets with specific release rate at different time intervals (release percent of 2, 6, 12, and 24 hr were 6.24, 33.48, 75.18, and 95.26%, respectively) which followed a zero-order mechanism (n = 0.93). The results of moisture absorption by Karl Fischer has shown the optimum SR pellets at 25°C/60% RH, 30°C/65% RH, and 40°C/75% RH chambers from 1 hr-4 weeks, attributing that the moisture absorption was not significantly increased. In the in vivo study, the results of the bioavailability data showed the Tmax (from 0.65 ± 0.082 hr-4.82 ± 2.12 hr) and AUC0-30 hr (from 734.88 ± 230.68 ng/mL.hr-1454.86 ± 319.28 ng/mL.hr) were prolonged and increased, as well as Cmax (from 251.87 ± 27.51 ng/mL-115.08 ± 14.87 ng/mL) was decreased for optimum SR-PB pellets when compared with commercial immediate-release (IR) tablets. Furthermore, a good linear regression relationship (r = 0.9943) was observed between the fraction dissolution and fraction absorption for the optimum SR pellets. In this study, the formulation design not only improved the hygroscopic character of PB but also achieved the SR effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号