首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study evaluated different mucoadhesive polymeric hydrogels for nasal delivery of acyclovir. Gels containing poly-N-vinyl-2-pyrrolidone (PVP) were prepared with crosslinking achieved by irradiation with a radiation dose of 15 kGy being as efficient as 20 kGy. Gels containing chitosan and carbopol were also evaluated. The mucoadhesive properties of gels were measured by a modification of a classical tensile experiment, employing a tensile tester and using freshly excised sheep nasal mucosa. Considering the mucoadhesive force, chitosan gel and gel prepared with 3% PVP in presence of polyethylene glycol (PEG) 600 were the most efficient. The in vitro drug release depended on the gel composition. Higher release rates were obtained from PVP gels compared to chitosan or carbopol gels. The release rate of drug from PVP gels was increased further in presence of PEG or glycerol. Histopathological investigations proved that the PVP was a safe hydrogel to be used for mucosal delivery. The PEG in gel formulations caused less damages to the nasal mucosal compared to formulation containing glycerol.  相似文献   

2.
Objective: Lyophilized microparticles composed of budesonide (BDS), hydroxypropyl-β-cyclodextrin (HP-β-CD), and hydroxypropylmethylcellulose (HPMC) or sodium carboxymethylcellulose (CMC-Na) were developed for intranasal delivery and their characteristics were evaluated.

Materials and methods: The particle size and morphology were assessed by mean diameter measurement and scanning electron microscopy (SEM) image, respectively. The solid-state of products was tested by X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). In vitro drug release and cytotoxicity to the primary human nasal epithelial (HNE) cells were also evaluated.

Results and discussion: Lyophilized microparticles exhibited vanishment of crystallinity of drug in XRPD analysis, the enfeeblement of carbonyl (C=O) stretching bands of carboxyl group in BDS in FT-IR spectra and the disappearance of endothermic peak of drug in the results of DSC study. Based on the results of solid-state studies, BDS was existed as an amorphous form in the lyophilized microparticles. CD complexation enhanced drug solubility and release rate, and HPMC or CMC-Na also improved drug dissolution rates. Cytotoxicity of developed microparticles to the HNE cells was measured and their safety to HNE cell was identified.

Conclusion: Developed microparticles can efficiently deliver insoluble drug, such as BDS, to the nasal epithelium and thus it may improve therapeutic efficacy in the respiratory tract.  相似文献   


3.
The objective of this study was to investigate the mechanism by which hydroxypropyl-β-cyclodextrin (HPCD) increases transdermal permeation. Hairless mouse skin was pretreated with HPCD solutions for up to 4 h. After removing the HPCD, corticosteroid-containing suspensions were applied and the transdermal flux and skin accumulation of two model drugs were investigated. After pretreatment, changes to the stratum corneum endothermic melting transitions were determined as an indication of HPCD-induced lipid disorganization. Results demonstrated that HPCD pretreatment had no significant effect on the transdermal permeation or skin accumulation of the model corticosteroids. These findings suggest that HPCD functions to enhance the apparent solubility of the drug in the formulation, thus increasing transdermal permeation rather than extracting lipids from the skin.  相似文献   

4.
To overcome the relatively short gastrointestinal (GI) time and improve localization for oral controlled or sustained release drug delivery systems, bioadhesive polymers that adhere to the mucin/epithelial surface are effective and lead to significant improvement in oral drug delivery. Improvements are also expected for other mucus-covered sites of drug administration. Bioadhesive polymers find application in the eye, nose, and vaginal cavity as well as in the GI tract, including the buccal cavity and rectum. This article lays emphasis mainly on mucoadhesive polymers, their properties, and their applications in buccal, ocular, nasal, and vaginal drug delivery systems with its evaluation methods.  相似文献   

5.
Abstract

The aim of this work was to study the release and the permeation rate of lorazepam, in order to develop a transdermal therapeutic system (TTS) containing that drug. Only a small number of drugs are by themselves able to permeate the skin at a useful rate in order to achieve a therapeutic effect. The lorazepam permeation rate did not reach that value and required a skin permeation enhancer to increase the skin's permeability. Three permeation enhancers (Tween 80, sodium lauryl sulfate, and benzalkonium chloride) were investigated in two different concentrations: 1% and 5% of the amount of lorazepam. The best permeation enhancement results were obtained using benzalkonium chloride in concentration of 5%.  相似文献   

6.
The aim of this work was to study the release and the permeation rate of lorazepam, in order to develop a transdermal therapeutic system (TTS) containing that drug. Only a small number of drugs are by themselves able to permeate the skin at a useful rate in order to achieve a therapeutic effect. The lorazepam permeation rate did not reach that value and required a skin permeation enhancer to increase the skin's permeability. Three permeation enhancers (Tween 80, sodium lauryl sulfate, and benzalkonium chloride) were investigated in two different concentrations: 1% and 5% of the amount of lorazepam. The best permeation enhancement results were obtained using benzalkonium chloride in concentration of 5%.  相似文献   

7.
ABSTRACT

Conventional and composed promethazine-loaded microspheres were prepared by spray drying of chitosan solution systems and double water-in-oil-in-water (W/O/W) emulsion systems, respectively. Double emulsions were prepared in two different feed concentrations, with chitosan dissolved in both water phases, and ethylcellulose dissolved in oil phase. Swelling and bioadhesive properties of the microspheres depended on the chitosan content, type and the feed concentration of spray-dried system. Results obtained suggested that better ethylcellulose microcapsules with promethazine in the chitosan matrix were formed when less concentrated emulsion systems were spray-dried. Thus, in case of such a system, with ethylcellulose/chitosan weight ratio of 1:2, prolonged promethazine release was obtained.  相似文献   

8.
Risperidone nanoemulsion (NE) and mucoadhesive NE formulations were successfully prepared by the spontaneous emulsification method (titration method) using Capmul MCM as the oily phase on the basis of solubility studies. The NE formulation containing 8%?oil, 44%?Smix, 48%?(wt/wt) aqueous phase that displayed an optical transparency of 99.82%, globule size of 15.5?±?2.12 nm, and polydispersity of 0.172?±?0.02 was selected for the incorporation of mucoadhesive components. The mucoadhesive formulation that contained 0.5%?by weight of chitosan displayed highest diffusion coefficient that followed Higuchi model was free from nasal ciliotoxicity and stable for 3 months.  相似文献   

9.
The present study was aimed at developing a tablet formulation based on an effective flurbiprofen-cyclodextrin system, able to allow a rapid and complete dissolution of this practically insoluble drug. Three different cyclodextrins were evaluated: the parent β-cyclodextrin (previously found to be the best partner for the drug among the natural cyclodextrins), and two amorphous, highly soluble β-cyclodextrin derivatives, i.e., methyl-β-cyclodextrin and hydroxyethyl-β-cyclodextrin. Equimolar drug-cyclodextrin binary systems prepared according to five different techniques (physical mixing, kneading, sealed-heating, coevaporation, and colyophilization) were characterized by Differential Scanning Calorimetry, x-ray powder diffractometry, infrared spectroscopy, and optical microscopy and evaluated for solubility and dissolution rate properties. The drug solubility improvement obtained by the different binary systems varied from a minimum of 2.5 times up to a maximum of 120 times, depending on both the cyclodextrin type and the system preparation method. Selected binary systems were used for preparation of direct compression tablets with reduced drug dosage (50 mg). Chitosan and spray-dried lactose, alone or in mixture, were used as excipients. All formulations containing drug-cyclodextrin systems gave a higher drug dissolved amount than the corresponding ones with drug alone (also at a dose of 100 mg); however, the drug dissolution behavior was strongly influenced by formulation factors. For example, for the same drug-cyclodextrin product the time to dissolve 50% drug varied from less than 5 minutes to more than 60 minutes, depending on the excipient used for tableting. In particular, only tablets containing the drug kneaded with methyl-β-cyclodextrin or colyophilized with β-cyclodextrin and spray-dried lactose as the only excipient satisfied the requirements of the Food and Drug Administration (FDA) for rapid dissolving tablets, allowing more than 85% drug to be dissolved within 30 minutes. Finally, it can be reasonably expected that the obtained drug dissolution rate improvement will result in an increase of its bioavailability, with the possibility of reducing drug dosage and side effects.  相似文献   

10.
11.
Tacrolimus (FK 506), a poorly soluble immunosuppressant is currently formulated in nonaqueous vehicle containing hydrogenated castor oil derivative for intravenous administration. Hydrogenated castor oil derivatives are associated with acute anaphylactic reactions. This proposes to overcome the problems of poor aqueous solubility of the drug and the toxicity associated with currently used excipients by the development of a new parenterally acceptable formulation using self-microemulsifying drug delivery system (SMEDDS). Solubility of FK 506 in various oils, surfactants, and cosurfactants was determined to identify SMEDDS components. Phase diagrams were constructed at different ratios of surfactants: cosurfactant (Km) to determine microemulsion existence area. Influence of oily phase content, Km, aqueous phase composition, dilution, and incorporation of drug on mean globule size of microemulsions was studied. SMEDDSs were developed using ethyl oleate as oily phase and Solutol HS 15 as surfactant. Glycofurol was used successfully as a cosurfactant. Developed SMEDDS could solubilize 0.8% (wt/wt) FK 506 and on addition to aqueous phase could form spontaneous microemulsion with mean globule size < 30 nm. The resulting microemulsion was iso-osmotic, did not show any phase separation or drug precipitation even after 24 h, and exhibited negligible hemolytic potential to red blood cells.  相似文献   

12.
快速响应水凝胶在给药系统中的应用进展   总被引:1,自引:0,他引:1  
传统智能水凝胶作为药物载体可控制药物的定点、定时、定量释放,具有提高药效、靶向,减少给药频率,增加安全性等优点。但由于存在响应速率慢的缺点而大大限制其应用。因此,近年来围绕提高智能水凝胶给药的响应速率的研究非常活跃,展示了广阔的应用前景。文中综述了快速响应水凝胶的类型、制备原理与给药系统中的应用进展,并指出其缺点及发展方向。  相似文献   

13.
The realization that blood‐borne delivery systems must overcome a multiplicity of biological barriers has led to the fabrication of a multistage delivery system (MDS) designed to temporally release successive stages of particles or agents to conquer sequential barriers, with the goal of enhancing delivery of therapeutic and diagnostic agents to the target site. In its simplest form, the MDS comprises stage‐one porous silicon microparticles that function as carriers of second‐stage nanoparticles. Cellular uptake of nontargeted discoidal silicon microparticles by macrophages is confirmed by electron and atomic force microscopy (AFM). Using superparamagnetic iron oxide nanoparticles (SPIONs) as a model of secondary nanoparticles, successful loading of the porous matrix of silicon microparticles is achieved, and retention of the nanoparticles is enhanced by aminosilylation of the loaded microparticles with 3‐aminopropyltriethoxysilane. The impact of silane concentration and reaction time on the nature of the silane polymer on porous silicon is investigated by AFM and X‐ray photoelectron microscopy. Tissue samples from mice intravenously administered the MDS support co‐localization of silicon microparticles and SPIONs across various tissues with enhanced SPION release in spleen, compared to liver and lungs, and enhanced retention of SPIONs following silane capping of the MDS. Phantom models of the SPION‐loaded MDS display negative contrast in magnetic resonance images. In addition to forming a cap over the silicon pores, the silane polymer provides free amines for antibody conjugation to the microparticles, with both VEGFR‐2‐ and PECAM‐specific antibodies leading to enhanced endothelial association. This study demonstrates the assembly and cellular association of a multiparticle delivery system that is biomolecularly targeted and has potential for applications in biological imaging.  相似文献   

14.
For years now, the delivery of small molecules through the buccal mucosal route has been described in the literature, but it has only been over the past decade that investigations into macromolecule delivery via the buccal route have sharply increased. The administration of macromolecules such as proteins and peptides, antibodies, or nucleic acids by buccal administration would be greatly enhanced due to the avoidance of the gastrointestinal conditions, rapid uptake into systemic circulation, as well as the potential for controlled drug delivery. Since macromolecules are faced with a number of specific challenges related to permeation through the epithelium, several strategies have been employed historically to improve their buccal absorption and subsequent bioavailability. Several conventional strategies to improve macromolecule penetration include the use of chemical permeation enhancers, enzyme inhibitors and the use of mucoadhesive materials acting as carriers. More recent approaches include the incorporation of the macromolecule as part of nanostructured delivery systems to further enhance targeting and delivery. This review focuses on the different permeation enhancing strategies as well as formulation design that are tailored to meet the challenges of active macromolecule delivery using the buccal mucosal route of administration.  相似文献   

15.
The purpose of this study was to develop a microparticulate formulation for nasal delivery of exenatide utilizing a thiolated polymer. Poly(acrylic acid)-cysteine (PAA-cys) and unmodified PAA microparticles loaded with exenatide were prepared via coprecipitation of the drug and the polymer followed by micronization. Particle size, drug load and release of incorporated exenatide were evaluated. Permeation enhancing properties of the formulations were investigated on excised porcine respiratory mucosa. The viability of the mucosa was investigated by histological studies. Furthermore, ciliary beat frequency (CBF) studies were performed. Microparticles displayed a mean size of 70–80?µm. Drug encapsulation was ~80% for both thiolated and non-thiolated microparticles. Exenatide was released from both thiolated and non-thiolated particles in comparison to exenatide in buffer only within 40?min. As compared to exenatide dissolved in buffer only, non-thiolated and thiolated microparticles resulted in a 2.6- and 4.7-fold uptake, respectively. Histological studies performed before and after permeation studies showed that the mucosa is not damaged during permeation studies. CBF studies showed that the formulations were cilio-friendly. Based on these results, poly(acrylic acid)-cysteine-based microparticles seem to be a promising approach starting point for the nasal delivery of exenatide.  相似文献   

16.
The emerging field of precision medicine is rapidly growing, fostered by the advances in genome mapping and molecular diagnosis. In general, the translation of these advances into precision treatments relies on the use of biological macromolecules, whose structure offers a high specificity and potency. Unfortunately, due to their complex structure and limited ability to overcome biological barriers, these macromolecules need to be administered via injection. The scientific community has devoted significant effort to making the oral administration of macromolecules plausible thanks to the implementation of drug delivery technologies. Here, an overview of the current situation and future prospects in the field of oral delivery of biologics is provided. Technologies in clinical trials, as well as recent and disruptive delivery systems proposed in the literature for local and systemic delivery of biologics including peptides, antibodies, and nucleic acids, are described. Strategies for the specific targeting of gastrointestinal regions—stomach, small bowel, and colon—cell populations, and internalization pathways, are analyzed. Finally, challenges associated with the clinical translation, future prospects, and identified opportunities for advancement in this field are also discussed.  相似文献   

17.
The effectiveness of an interactive mixture as a rapid drug delivery system is compared with that of a solid dispersion. The influences of drug load, particle size, and crystallinity of these test systems are investigated. The interactive mixtures and solid dispersions were prepared from polyethylene glycol (PEG) 3350 and hydrophobic nifedipine drug by means of physical mixing and melting methods, respectively. The formed products were subjected to drug particle size and crystallinity analyses, and dissolution tests. In comparison with the interactive mixtures, the solid dispersions with low drug load were more effective as a rapid drug delivery system, as the size of a given batch of drug particles was markedly reduced by the molten PEG 3350. The rate and extent of drug dissolution were mainly promoted by decreasing effective drug particle size. However, these were lower in the solid dispersions than in the interactive mixtures when a high load of fine drug particles was used as the starting material. This was attributed to drug coarsening during the preparation of the solid dispersion. Unlike solid dispersions, the interactive mixtures could accommodate a high load of fine drug particles without compromising its capacity to enhance the rate and extent of drug dissolution. The interactive mixture is appropriate for use to deliver a fine hydrophobic drug in a formulation requiring a high drug load.  相似文献   

18.
Ambroxol is an expectoration improver and mucolytic agent that has been used to treat acute and chronic disorders. However, ambroxol needs to be administered percutaneously in order to avoid systemic adverse effects, such as headache, drowsiness, dizziness, and insomnia, which can occur after oral administration. The aim of this study was to develop a gel preparation containing a permeation enhancer to enhance the delivery of ambroxol. The ambroxol gels were prepared using hydroxypropyl methylcellulose (HPMC) and poloxamer 407. The release characteristics of the drug from the gels were examined according to the receptor medium, drug concentration, and temperature. The rate of drug permeation into the skin was enhanced by incorporating various enhancers such as the ethylene glycols, the propylene glycols, the glycerides, the non-ionic surfactants, and the fatty acids into the gels. The permeation study through mouse skin was examined at 37?C. The rate of drug release increased with increasing drug concentration and temperature. Among the enhancers used, propylene glycol mono caprylate showed the best enhancing effects. The estimated activation energy of release (Ea), which was calculated from the slope of a log P versus 1000/T plot, was 14.80, 14.22, 13.91, and 12.46 kcal/mol for ambroxol loading doses of 2, 3, 4, and 5%, respectively. The results of this study show that the gel preparation of ambroxol containing a permeation enhancer could be developed for the enhanced transdermal delivery of ambroxol.  相似文献   

19.
递纸机构简化模型及动态研究   总被引:1,自引:0,他引:1  
印刷机递纸机构的性能对整机的套准精度有着重要的影响.为了改善高速递纸机构的动态特性,建立了递纸机构的三维模型以及机构简化模型,分析了交流电机驱动系统的转矩波动,在此基础上建立了递纸机构的机电耦合方程,得出交流电机驱动系统的转矩波动等因素对机构的动态性能产生的影响,以及系统动态性能与其驱动系统参数和结构参数之间的关系,从而有利于改善、提高印刷机递纸机构的动态性能.  相似文献   

20.
外泌体是一种活细胞分泌的直径为40~100nm的囊状小泡,是细胞间信息传递、物质交换的重要媒介。作为天然内源性的物质转运载体,采用外泌体负载药物具有毒性低、无免疫原性、渗透性好等优势,目前,外泌体已成功负载小分子化学药物、基因药物用于治疗肿瘤及阿尔茨海默症等疾病。文章将基于外泌体的发展情况就外泌体在药物递送系统中的应用进行详细的介绍分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号