首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this investigation, poly(lactide-co-glycolide) (PLGA) gel implants and microspheric depot systems of bleomycin (BLM) were formulated and evaluated in vivo in mice bearing transplantable solid tumor (fibrosarcoma). The pharmacodynamic studies showed that both the formulations retarded tumor growth significantly (p<0.05) when compared to the control animals (without any drug treatment). Preliminary pharmacokinetic studies illustrated controlled release of the drug into the systemic circulation to elicit the anti-neoplastic action. The gel implants showed better release characteristics and greater pharmacodynamic action when compared to the microspheres, thus demonstrating the feasibility of employing biodegradable depot polymer gel matrix for chronic cancer therapy.  相似文献   

2.
ABSTRACT

Nanostructured Lipid Carrier (NLC)–based topical gel of Valdecoxib was formulated with the aim of faster onset yet prolonged action for the treatment of inflammation and allied conditions. NLCs prepared by microemulsion template technique were characterized by photon correlation spectroscopy for size. Drug encapsulation efficiency was determined using Nanosep® centrifugal device. The nanoparticulate dispersion was suitably gelled and characterized with respect to drug content, pH, spreadibility, rheology, and in-vitro release. Safety of the NLC-based gel was assessed using primary skin irritation studies, and efficacy was confirmed using pharmacodynamic study, namely the Aerosil-induced Rat Paw edema model. The developed NLC-based gel showed faster onset and elicited prolonged activity up to 24 hours.  相似文献   

3.
Abstract

Floating tablets of pregabalin were prepared using different concentrations of the gums (xanthan gum and guar gum), Carbopol 974P NF and HPMC K100. Optimized formulations were studied for physical tests, floating time, swelling behavior, in vitro release studies and stability studies. In vitro drug release was higher for tablet batches containing guar and xanthan gum as compared to the batches containing Carbopol 974P NF. Tablet batches were subjected to stability studies and evaluated by different parameters (drug release, drug content, FTIR and DSC studies). The optimized tablet batch was selected for in vivo pharmacodynamic studies (PTZ induced seizures). The results obtained showed that the onset of jerks and clonus were delayed and extensor phase was abolished with time in treated groups. A significant difference (p?>?0.05) was observed in control and treated group behavior indicating an excellent activity of the formulation for a longer period (>12?h).  相似文献   

4.
Background: Several in situ gel-forming systems have been developed to prolong the precorneal residence time of a drug and to improve ocular bioavailability. Poloxamer 407 with its thermoreversible gelation and surface active properties was utilized to formulate a novel dorzolamide hydrochloride in situ gel nanoemulsion (NE) delivery system for ocular use. Objective: Improvement of both ocular bioavailability and duration of action for dorzolamide hydrochloride was the aim of this study. Methods: Physicochemical properties, in vitro drug release studies and biological evaluation of the prepared NEs were investigated. Results: The optimum formulation of in situ gel NE consisted of Triacetin (7.80%), Poloxamer 407 (13.65%), Poloxamer 188 (3.41%), Miranol C2M (4.55%), and water (70.59%). Biological evaluation of the designed dorzolamide formulation on normotensive albino rabbits indicated that this formulation had better biological performance, faster onset of action, and prolonged effect relative to either drug solution or the market product. The formula showed a superior pharmacodynamic activity compared to the in situ gel dorzolamide eye drops. This indicated the effectiveness of the in situ gel properties of poloxamer 407, besides formulating the drug in an NE form for improving the therapeutic efficacy of the drug. Conclusion: These results demonstrate the superiority of in situ gel NE to conventional ocular eye drops and in situ gels to enhance ocular drug bioavailability.  相似文献   

5.
The aim of this study was to enhance the delivery of resveratrol to the brain through the transnasal route by cubosomes. Cubosomes were prepared using glycerol monooleate and Lutrol F127 by probe sonication method. A 32 full factorial design was used for optimization of cubosomes and batch containing 4% w/v glycerol monooleate and 1.5% w/v of Lutrol F 127 was optimized. The selected cubosomal batch was cubical in shape, having mean particle size 161.5?±?0.12?nm. Entrapment efficiency was found to be 83.08% with zeta potential of –20.9?mV. In vitro release of cubosomal batch showed controlled release of drug profile (67%) up to 24?h. The optimized cubosomal dispersion was dispersed into gelling polymer (poloxamer 407) to form in situ gel for nasal use. The optimal cubosomal gel (containing 12% w/v poloxamer 407) had been subjected to ex-vivo permeation and in vivo biodistribution studies. It showed significantly higher transnasal permeation and better distribution to brain, when compared to the drug solution (i.n.) and drug solution (oral). Finally the cubosomal gel could be considered as a promising carrier for brain targeting of Resveratrol (Res) through transnasal route.  相似文献   

6.
Abstract

Objective: Nisoldipine (ND) is a potential antihypertensive drug with low oral bioavailability. The aim was to develop an optimal formulation of ND-loaded solid lipid nanoparticles (ND-SLNs) for improved oral bioavailability and pharmacodynamic effect by using a two-factor, three-level central composite design. Glyceryl trimyristate (Dynasan 114) and egg lecithin were selected as independent variables. Particle size (Y1), PDI (Y2) and entrapment efficiency (EE) (Y3) of SLNs were selected as dependent response variables.

Methods: The ND-SLNs were prepared by hot homogenization followed by ultrasonication. The size, PDI, zeta potential, EE, assay, in vitro release and morphology of ND-SLNs were characterized. Further, the pharmacokinetic (PK) and pharmacodynamic behavior of ND-SLNs was evaluated in male Wistar rats.

Results: The optimal ND-SLN formulation had particle size of 104.4?±?2.13?nm, PDI of 0.241?±?0.02 and EE of 89.84?±?0.52%. The differential scanning calorimetry and X-ray diffraction analyses indicated that the drug incorporated into ND-SLNs was in amorphous form. The morphology of ND-SLNs was found to be nearly spherical by scanning electron microscopy. The optimized formulation was stable at refrigerated and room temperature for 3 months. PK studies showed that 2.17-fold increase in oral bioavailability when compared with a drug suspension. In pharmacodynamic studies, a significant reduction in the systolic blood pressure was observed, which sustained for a period of 36?h when compared with a controlled suspension.

Conclusion: Taken together, the results conclusively demonstrated that the developed optimal ND-SLNs caused significant enhancement in oral bioavailability along with pharmacodynamic effect.  相似文献   

7.
This study was performed to obtain prolonged drug release with biodegradable in situ forming implants for the local delivery of metronidazole to periodontal pockets. The effect of polymer type (capped and uncapped PLGA), solvent type (water-miscible and water-immiscible) and the polymer/drug ratio on in vitro drug release studies were investigated. In situ implants with sustained metronidazole release and low initial burst consisted of capped PLGA and N-methyl-2-pyrolidone as solvent. Mucoadhesive polymers were incorporated into the in situ implants in order to modify the properties of the delivery systems towards longer residence times in vivo. Addition of the polymers changed the adhesiveness and increased the viscosity and drug release of the formulations. However, sustained drug release over 10 days was achievable. Biodegradable in situ forming implants are therefore an attractive delivery system to achieve prolonged release of metronidazole at periodontal therapy.  相似文献   

8.
ABSTRACT

Simvastatin (SVS), a cholesterol-lowering drug, has been shown to stimulate bone formation. This study deals with the design and in vitro evaluation of local delivery systems for simvastatin. They are intended to treat bony defects resulting from periodontitis or to induce osteogenesis around the titanium implants. Granules and gels were formulated using bioerodible/biocompatible polymers, namely hydroxypropylmethyl cellulose (H), sodium carboxymethyl cellulose (C), and chitosan (Ch). The in vitro release profiles and kinetics were evaluated and the swelling and/or erosion was monitored. Differential scanning calorimetry (DSC) and infrared (IR) were used to detect any SVS/polymer interactions that may affect drug release. The results revealed variable extents of controlled drug release from the designed formulae depending on the polymer nature. About 50% cumulative SVS was released from both H granules and gel formulae within 24 h and ~66% and ~88% from C granules and gel, respectively. Ch formulae exhibited ~50% release from granules and ~30% from gel.  相似文献   

9.
Objective: The aim of the present investigation was to investigate the efficacy of solid lipid nanoparticles (SLNs) to enhance the absorption and bioavailability of lurasidone hydrochloride (LH) following oral administration.

Methods: The LH loaded SLNs (LH-SLNs) were prepared by high pressure homogenization (HPH) method, optimized using box Behnken design and evaluated for particle size (PS), entrapment efficiency (EE), morphology, FTIR, DSC, XRD, in vitro release, ex vivo permeation, transport studies across Caco-2 cell line and in vivo pharmacokinetic and pharmacodynamic studies.

Results: The LH-SLNs had PS of 139.8?±?5.5?nm, EE of 79.10?±?2.50% and zeta potential of ?30.8?±?3.5?mV. TEM images showed that LH-SLNs had a uniform size distribution and spherical shape. The in vitro release from LH-SLNs followed the Higuchi model. The ex vivo permeability study demonstrated enhanced drug permeation from LH-SLNs (>90%) through rat intestine as compared to LH-suspension. The SLNs were found to be taken up by energy dependent, endocytic mechanism which was mediated by clathrin/caveolae-mediated endocytosis across Caco-2 cell line. The pharmacokinetic results showed that oral bioavailability of LH was improved over 5.16-fold after incorporation into SLNs as compared to LH-suspension. The pharmacodynamic study proved the antipsychotic potential of LH-SLNs in the treatment of schizophrenia.

Conclusion: It was concluded that oral administration of LH-SLNs in rats improved the bioavailability of LH via lymphatic uptake along with improved therapeutic effect in MK-801 induced schizophrenia model in rats.  相似文献   

10.
Objective: To develop mucoadhesive tablets for the vaginal delivery of progesterone (P4) to overcome its low oral bioavailability resulting from drug hydrophobicity and extensive hepatic metabolism.

Methods: The tablets were prepared using mixtures of P4/Pluronic® F-127 solid dispersion and different mucoadhesive polymers. The tablets physical properties, swelling index, mucoadhesion and drug release kinetics were evaluated. P4 pharmacokinetic and pharmacodynamic properties were evaluated in female rabbits and compared with vaginal micronized P4 tablets and intramuscular (IM) P4 injection, respectively.

Results: The tablets had satisfactory physical properties and their swelling, in vitro mucoadhesion force and ex vivo mucoadhesion time were dependent on tablet composition. Highest swelling index and mucoadhesion time were detected for tablets containing 20% chitosan-10% alginate mixture. Most tablets exhibited burst release (~25%) during the first 2?h but sustained the drug release for ~48?h. In vivo study showed that chitosan-alginate mucoadhesive tablets had ~2-fold higher P4 mean residence time (MRT) in the blood and 5-fold higher bioavailability compared with oral P4. Further, same tablets showed 2-fold higher myometrium thickness in rabbit uterus compared with IM P4 injection.

Conclusion: These results confirm the potential of these mucoadhesive vaginal tablets to enhance P4 efficacy and avoid the side effects associated with IM injection.  相似文献   

11.
One of the prerequisites for a parenteral preparation is that the excipients incorporated are biocompatible and biodegradable. In the present study hydrophilic and hydrophobic excipients were investigated for developing an intramuscular sustained‐release formulation of ketorolac. Kollidon® 17 PF, Peceol (glyceryl monooleate), and castor oil were chosen as the potential release‐retarding agents, each with a distinct mechanism of action. They were evaluated by in vitro drug‐release profiles and in vivo pharmacodynamic and pharmacokinetic study in mice. Cumulative drug release was determined for standard and test formulations in modified Franz diffusion cell. Pharmacodynamic parameter, T?=?70% response of peak analgesic response, was used to compare the performance of test formulations. Based on pharmacodynamic/pharmacokinetic correlation in the animal studies, Cssmax and Cssmin of 51.39 and 30.0 µg/mL, respectively, were determined and considered as performance markers for pharmacokinetic evaluation of test formulations. The study suggested that the sustained‐release capability of glyceryl monooleate was maximum followed by that of castor oil and Kollidon 17 PF, when compared to conventional ketorolac tromethamine formulation. It was inferred that water soluble excipient, though, showed release retarding property in vitro but could not maintain it in the in vivo environment. Glyceryl monooloeate‐based formulation produced the most favorable drug blood concentration vs. time profile.  相似文献   

12.
Abstract

Poly(DL-lactic acid) (PLA) microspheres containing testosterone (T) were prepared by the solvent evaporation process to evaluate their physical properties such as size distribution, shape, drug content, in vivo controlled drug release, pharmacological influences on the prostate gland in castrated rats, and histopathological findings of tissues surrounding the implants. The in vivo release of T from PLA microspheres containing 30 mg of drug obtained with chloroform was continued over a 6-week period. This effect is attributed to high dispersibility ofT in the device when obtained with chloroform. Both serum drug levels and prostate gland weight recovery suggested the effects of a long-acting drug delivery system. The histopathological findings showed that the devices used were completely degraded 10 weeks after injection.  相似文献   

13.
ABSTRACT

The aim of this study was to formulate and optimize gliclazide-loaded Eudragit nanoparticles (Eudragit L100 and Eudragit RS) as a sustained release carrier with enhanced efficacy. Eudragit L 100 nanoparticles (ELNP) were prepared by controlled precipitation method whereas Eudragit RSPO nanoparticles (ERSNP) were prepared by solvent evaporation method. The influence of various formulation factors (stirring speed, drug:polymer ratio, homogenization, and addition of surfactants) on particle size, drug loading, and encapsulation efficiency were investigated. The developed Eudragit nanoparticles (L100 and RS) showed high drug loading and encapsulation efficiencies with nanosize. Mean particle size altered by changing the drug:polymer ratio and stirring speed. Addition of surfactants showed a promise to increase drug loading, encapsulation efficiency, and decreased particle size of ELNP as well as ERSNP. Dissolution study revealed sustained release of gliclazide from Eudragit L100 as well as Eudragit RSPO NP. SEM study revealed spherical morphology of the developed Eudragit (L100 and RS) NP. FT-IR and DSC studies showed no interaction of gliclazide with polymers. Stability studies revealed that the gliclazide-loaded nanoparticles were stable at the end of 6 months. Developed Eudragit NPs revealed a decreased tmin (ELNP), and enhanced bioavailability and sustained activity (ELNP and ERSNP) and hence superior activity as compared to plain gliclazide in streptozotocin induced diabetic rat model and glucose-loaded diabetic rat model. The developed Eudragit (L100 and RSPO) NP could reduce dose frequency, decrease side effects, and improve patient compliance.  相似文献   

14.
ABSTRACT

In this investigation, the diffusion of the beta2 agonist albuterol sulfate (ABS) across several membranes (cellulose, hairless mouse skin, human cadaver skin) from polymer gels was studied, and the effects of several fatty acids on drug permeation through skin were evaluated. The results were then used to predict whether transdermal delivery would be appropriate for ABS. All in vitro release studies were carried out at 37°C using modified Franz diffusion cells. In preliminary studies, ABS release through cellulose membranes was studied from two polymeric gels, Klucel® (hydroxypropylcellulose) and Methocel® (hydroxypropylmethylcellulose). Three polymer concentrations were used for each gel (0.5%, 1.0%, and 1.5%). From these experiments, Klucel 0.5% was selected as the optimal formulation to study ABS diffusion across hairless mouse skin. Experiments were conducted to evaluate the effects of capric acid, lauric acid, and myristic acid as penetration enhancers. The results suggested that lauric acid preferentially enhanced ABS diffusion compared to the other fatty acids studied, and follow-up studies were done to evaluate the release through human cadaver skin from a donor containing 2% ABS and lauric acid in 0.5% Klucel®. These experiments showed that a 2:1 (lauric acid:ABS) molar ratio gave the best ABS release rates. The release rate across human cadaver skin declined slowly over 24 hr, and an average flux over 24 hr of ?0.09 mg/hr cm2 was measured. Using this value as a steady-state flux, extrapolations predicted that transdermal delivery can be used to maintain therapeutic ABS plasma levels (6–14 ng/mL) for extended periods. The results of this research suggest that ABS is a good candidate for transdermal drug delivery.  相似文献   

15.
Abstract

Reservoir-type ocular inserts were fabricated using sodium alginate containing ciprofloxacin hydrochloride as the core (drug reservoir) that was sandwiched between the Eudragit and/or polyvinylacetate films. Ocular inserts were packaged in aluminium foil and sterilized by gamma radiation. These were tested for sterility as per British Pharmacopoeia (BP). Ocular inserts were evaluated for in vitro release rate studies, microbial efficacy, in vivo release studies, efficacy against induced bacterial conjunctivitis in rabbit's eyes, concentration in the aqueous humor, and stability studies as per the International Conference on Harmonization (ICH) guidelines. Ocular inserts passed the test for sterility. They showed zero-order release of the drug in the in vitro and in vivo release studies over a period of 120 hr. The drug was found to be active against selected microorganisms as was proved by microbial efficacy studies. A high correlation coefficient was found between in vitro and in vivo release rate studies. Better improvement was observed in artificially induced bacterial conjunctivitis in rabbit's eyes, compared with marketed eye drops and placebo. Drug concentration in the aqueous humor was found above Minimum Inhibitory Concentration (MIC-90) against selected microorganisms. Shelf-life of the product was found to be more than 2 years.  相似文献   

16.
Objective: The present investigation was aimed at optimizing of estradiol (E2) loaded l-amino acid derivatives organogel formulations resulting in improved the high initial release problems and sustained release of E2.

Methods: The visco-elastic properties of blank organogels were measured by rheometer. The E2 organogel formulations were optimized using a central composite design. Also, the effect of gelator structure and composition of the gel formulations on release behavior (in vitro and in vivo) had been studied.

Results: The change of the gelator structure could affect significantly the stiffness of the implants. The release behavior of gel without N-Methyl-2-pyrrolidinone (NMP) was controlled by gel corrosion only. While the drug release of the gel with NMP was controlled by both corrosion and diffusion. The high initial release problems of the organogels were improved by optimizing the formulations. The system consisting by N-Lauroyl l-lysine methyl ester (LLM) derivative in the oil indicated the lowest initial drug release, showed a much lower blood drug level and maintained a steady state for nearly 1 month.

Conclusion: Organogels based on l-lysine methyl ester derivative were ideal carriers for long-term parenteral administration of E2.  相似文献   

17.
Abstract

Parkinson’s disease is a degenerative disorder of the central nervous system (CNS). The most obvious symptoms are movement-related such as shaking, rigidity, slowness of movement and difficulty with walking, rigid muscular movements and difficulty in chewing and swallowing especially solid dosage forms. Ropinirole is an anti-Parkinson drug that has low oral bioavailability which is primarily due to first-pass metabolism. The objective of proposed work was to increase bioavailability of ropinirole and avoid patient discomfort by formulating thermoreversible in situ nasal gel. Thermoreversible nasal gels were prepared by cold method using Pluronic F-127 and hydroxy methyl propyl cellulose (HPMC K4M) as gelling agents. Formulations were evaluated for various parameters such as drug content, pH, gelling time, gelling temperature, gel strength, mucoadhesive force, ex vivo diffusion, histological studies and in vivo bioavailability. Formulations displayed gelation at nasal temperature and the gelation time was found to be less than mucociliary clearance time. The nasal residence time was seen to be increased due to mucoadhesion and increased gel strength. The nasal gel formulations showed ex vivo drug release between 56–100% in 5?h. Histological study of sheep nasal mucosa revealed that the gel had a protective effect on the mucosa unlike plain ropinirole which showed evidence of moderate cellular damage. A fivefold increase in bioavailability in brain was observed on nasal administration as compared to IV route. Thermoreversible in situ nasal gel was found to a promising drug delivery for Parkinsonian patients.  相似文献   

18.
Objective: The purpose of this work was to develop a new formulation to enhance the bioavailability and reduce the food effect of lurasidone using self-nanoemulsifying drug delivery systems (SNEDDSs).

Methods: The formulation of lurasidone-SNEDDS was selected by the solubility and pseudo-ternary phase diagram studies. The prepared lurasidone-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis, zeta potential and in vitro drug release. Lurasidone-SNEDDSs were administered to beagle dogs in fed and fasted state and their pharmacokinetics were compared to commercial available tablet as a control.

Results: The result showed lurasidone-SNEDDS was successfully prepared using Capmul MCM, Tween 80 and glycerol as oil phase, surfactant and co-surfactant, respectively. In vitro drug release studies indicated that the lurasidone-SNEDDS showed improved drug release profiles and the release behavior was not affected by the medium pH with total drug release of over 90% within 5?min. Pharmacokinetic study showed that the AUC(0–∞) and Cmax for lurasidone-SNEDDS are similar in the fasted and fed state, indicating essentially there is no food effect on the drug absorption.

Conclusion: It was concluded that enhanced bioavailability and no food effect of lurasidone had been achieved by using SNEDDS.  相似文献   

19.
Context: Short residence time, poor bioavailability and poor permeability are the major problems for conventional eye drops treatment.

Objective: The aim of this article is to develop, optimize and ex vivo–in vivo investigation of brimonidine tartrate in situ gel as compared to marketed eye drops for the treatment of glaucoma.

Materials and methods: The effect of independent variables, namely concentrations of polymers, on various dependent variables like viscosity at physiological pH and in vitro drug release were studied by using 32 factorial design. Further the optimized formulation was characterized for ex vivo and in vivo study.

Results and discussion: Experimental data demonstrated that optimized in situ gel formulation (F8) showed in vitroex vivo sustained release profile with polymer composites carbopol 974P and HPMC K4M. After 5?h of ex vivo transcorneal permeation study, the amount recovered from the corneal surface on the donor chamber 12.40% (124 ug) and the amount collected from the receptor chamber 76.8% (760 ug) of the initial dose 1?mg. The total amount recovered from the permeation experiment was 89.2%. Bioadhesive carbopol 974P and viscosity HPMC K4M composites optimized formulation (F 8) produce greater influence on the duration of drug action and improved intraocular pressure reduction activity as compared to marketed eye drop solution in in vivo study.

Conclusion: The developed in situ gelling system as a promising ophthalmic formulation to prolong the drug lowering effect on the intraocular pressure.  相似文献   

20.
ABSTRACT

This investigation deals with the development of buccal tablets containing chlorhexidine (CHX), a bis-bis-guanide with antimicrobial and antiseptic effects in the oral cavity, and able to adhere to the buccal mucosa to give local controlled release of drug. A mucoadhesive formulation was designed to swell and form a gel adhering to the mucosa and controlling the drug release into the oral cavity.

Some batches of tablets were developed by direct compression, containing different amounts of hydroxypropylmethylcellulose (HPMC) and carbomer; changing the amount ratio of these excipients in formulations, it is possible easily modulate the mucoadhesive effect and release of drug. The in vitro tests were performed using the USP 26/NF paddle apparatus, a specifically developed apparatus, and a modified Franz diffusion cells apparatus. This last method allows a simultaneous study of drug release rate from the tablets and drug permeation through the buccal mucosa.

Similar tests have also been carried out on a commercial product, Corsodyl gel®, in order to compare the drug release control of gel with respect to that of the mucoadhesive tablet, as a formulation for buccal delivery of CHX. While the commercial formulation does not appear to control the release, the formulation containing 15% w/w methocel behaves the best, ensuring the most rapid and complete release of the drug, together with a negligible absorption of the active agent as required for a local antiseptic action in the oral cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号