首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 866 毫秒
1.
Gelatin microparticles containing propolis ethanolic extractive solution were prepared by spray-drying technique. Particles with regular morphology, mean diameter ranging of 2.27 μm to 2.48 μm, and good entrapment efficiency for propolis were obtained. The in vitro antimicrobial activity of microparticles was evaluated against microorganisms of oral importance (Enterococcus faecalis, Streptococcus salivarius, Streptococcus sanguinis, Streptococcus mitis, Streptococcus mutans, Streptococcus sobrinus, Candida albicans, and Lactobacillus casei). The utilized techniques were diffusion in agar and determination of minimum inhibitory concentration. The choice of the method to evaluate the antimicrobial activity of microparticles showed be very important. The microparticles displayed activity against all tested strains of similar way to the propolis, showing greater activity against the strains of E. salivarius, S. sanguinis, S. mitis, and C. albicans.  相似文献   

2.
Abstract

A carbon monolith with a silver coating was prepared and its antimicrobial behaviour in a flow system was examined. The functional groups on the surface of the carbon monolith were determined by temperature-programmed desorption and Boehm's method, and the point of zero charge was determined by mass titration. The specific surface area was examined by N2 adsorption using the Brunauer, Emmett and Teller (BET) method. As a test for the surface activity, the deposition of silver from an aqueous solution of a silver salt was used. The morphology and structure of the silver coatings were characterized by scanning electron microscopy and x-ray diffraction. The resistance to the attrition of the silver deposited on the carbon monolith was tested. The antimicrobial activity of the carbon monolith with a silver coating was determined using standard microbiological methods. Carbon monolith samples with a silver coating showed good antimicrobial activity against Escherichia coli, Staphylococcus aureus and Candida albicans, and are therefore suitable for water purification, particularly as personal disposable water filters with a limited capacity.  相似文献   

3.
Abstract

Halogenated boroxine dipotassium trioxohydroxytetrafluorotriborate, K2[B3O3F4OH] (boroxine) was previously shown to be very effective in inhibition of several carcinoma cell lines, including the skin cancer. Here, we investigated its antimicrobial potential by targeting the multidrug-resistant opportunistic pathogens associated with skin and wound infections. The antimicrobial testing against eleven bacterial and four fungal species revealed good activity of boroxine against pathogenic filamentous fungi Penicillium funiculosum and Aspergillus niger (MIC50 64 and 128?µg/ml), and a moderate bioactivity against the yeast Candida albicans (MIC50 512?µg/ml). Among the tested multidrug-resistant bacteria, the best antibacterial effect, stable over a 24-h period, was observed against the methicillin-resistant Staphylococcus aureus strain (MRSA) at MIC of 1024?µg/ml. The atomic force microscopy (AFM) used to investigate the morphology of S. aureus cells revealed indentations on its cell envelope after the boroxine exposure. These results show that in addition to the antitumor effect, boroxine exerts wide spectrum antimicrobial activity, thus may help preventing the development of skin and wound-related opportunistic infections.  相似文献   

4.
Carbon nanotubes (CNTs) hold promise in manufacturing, environmental, and biomedical applications, as well as food and agricultural industries. Previous observations have shown that CNTs have antimicrobial activity; however, the impact of CNTs to human gut microbes has not been investigated. Here, the antibacterial activity of CNTs against the microbes commonly encountered in the human digestion system—L. acidophilus, B. adolescentis, E. coli, E. faecalis, and S. aureus—are evaluated. The bacteria studied include pathogenic and non‐pathogenic, gram‐positive and negative, and both sphere and rod strains. In this study, CNTs, including single‐walled CNTs (SWCNTs, 1–3 μm), short and long multi‐walled CNTs (s‐MWCNTs: 0.5–2 μm; l‐MWCNTs: >50 μm), and functionalized multi‐walled CNTs (hydroxyl‐ and carboxyl‐modification, 0.5–2 μm), all have broad‐spectrum antibacterial effects. Notably, CNTs may selectively lyse the walls and membranes of human gut microbes, depending on not only the length and surface functional groups of CNTs, but also the shapes of the bacteria. The mechanism of antibacterial activity is associated with their diameter‐dependent piercing and length‐dependent wrapping on the lysis of microbial walls and membranes, inducing release of intracellular components DNA and RNA and allowing a loss of bacterial membrane potential, demonstrating complete destruction of bacteria. Thin and rigid SWCNT show more effective wall/membrane piercing on spherical bacteria than MWCNTs. Long MWCNT may wrap around gut bacteria, increasing the area making contact with the bacterial wall. This work suggests that CNTs may be broad‐spectrum and efficient antibacterial agents in the gut, and selective application of CNTs could reduce the potential hazard to probiotic bacteria.  相似文献   

5.
In this study, the authors investigated antimicrobial activity of TiO2 nanoparticles (NPs) synthesised by sol–gel method. As synthesised TiO2 NPs were characterised by X‐ray diffraction, scanning electron microscopy and ultraviolet‐visible absorption spectroscopy. The antimicrobial activity of calcined TiO2 nanoparticle samples was examined in day light on Gram positive bacteria (Staphylococcus aureus, Streptococcus pneumonia and Bacillus subtilis), Gram negative bacteria (Proteus vulgaris, Pseudomonas aeruginosa and Escherichia coli) and fungal test pathogen Candida albicans. The synthesised TiO2 NPs were found to be effective in visible light against Streptococcus pneumonia, Staphylococcus aureus, Proteus vulgaris, Pseudomonas aeruginosa and Candida albicans.Inspec keywords: titanium compounds, microorganisms, nanomedicine, biomedical materials, nanofabrication, sol‐gel processing, ultraviolet spectra, visible spectra, X‐ray diffraction, scanning electron microscopy, nanoparticles, antibacterial activityOther keywords: microbicidal activity, titanium dioxide nanoparticle, sol‐gel method, antimicrobial activity, X‐ray diffraction, scanning electron microscopy, ultraviolet‐visible absorption spectroscopy, Gram positive bacteria, Staphylococcus aureus, Streptococcus pneumonia, Bacillus subtilis, TiO2 , Candida albicans, fungal test pathogen, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Gram negative bacteria  相似文献   

6.
The aim of this study was using a novel antimicrobial thermoplastic plasticizer based on aliphatic anhydride derivative dodecenyl succinic anhydride (DSA) for blending poly (vinyl chloride), PVC, with gelatin in presence of montmorillonite (MMT) using Brabender via polymer melting technique. This anhydride-based plasticizer blended the membrane ingredients homogenously under melting process. The used plasticizer exhibited high performance antimicrobial potency for some biomedical and industrial applications. The prepared biocomposite films were evaluated for antimicrobial activity using agar disc diffusion method against gram-positive and gram-negative bacteria such as: Staphylococcus aureus (S. aureus), Klebsiella pneumonia (K. pneumonia), Bacillus cereus (B. cereus), Bacillus subtilis (B. subtilis) and Escherichia coli (E. coli). The majority of these biocomposites, except the plasticized PVC with DOP, have shown inhibitory effect at different concentrations (1.0–20) mg/ml against all above mentioned bacteria. However, C. albicans and A. niger were the most resistant strains.  相似文献   

7.
Hyaluronic acid (HA) has several clinical applications (aesthetic surgery, dermatology, orthopaedics and ophtalmology). Following recent evidence, suggesting antimicrobial and antiviral properties for HA, we investigated its effects on 15 ATCC strains, representative of clinically relevant bacterial and fungal species. The in vitro system employed allowed to assess optical density of broth cultures as a measure of microbial load in a time-dependent manner. The results showed that different microbial species and, sometimes, different strains belonging to the same species, are differently affected by HA. In particular, staphylococci, enterococci, Streptococcus mutans, two Escherichia coli strains, Pseudomonas aeruginosa, Candida glabrata and C. parapsilosis displayed a HA dose-dependent growth inhibition; no HA effects were detected in E. coli ATCC 13768 and C. albicans; S. sanguinis was favoured by the highest HA dose. Therefore, the influence of HA on bacteria and fungi warrants further studies aimed at better establishing its relevance in clinical applications.  相似文献   

8.
Objective: Simple Eudragit microparticles loaded with prednisolone and chitosan-succinyl-prednisolone conjugate microparticles coated with Eudragit were prepared and characterized in vitro in order to obtain their basic features as a colonic delivery system.

Materials and methods: Both types of microparticles were prepared by the emulsification-solvent evaporation modified somewhat from the previous one. Their particle size, shape and their drug content were investigated, and in vitro release profiles were examined using JP-15 1st fluid (pH 1.2), JP-15 2nd fluid (pH 6.8) and PBS (pH 7.4) as release media. Furthermore, the regeneration of conjugate microparticles from Eudragit-coated microparticles was investigated under the same incubation conditions.

Results: Simple Eudragit S100 (EuS) microparticles (ES-M) were almost spherical, ca. 1.2 μm diameter, and PD content ca. 3.7% (w/w). Conjugate microparticles (CS-M1) and EuS-coated conjugate microparticles (CS-M1/S) had particle sizes of ca. 2.8 and 15.3 μm, respectively, and PD contents of 5.4 and 2.1% (w/w), respectively. ES-M exhibited suppressed release at pH 1.2, gradual release at pH 6.8 and rapid release at pH 7.4. CS-M1 showed no release at pH 1.2, and very slow release at pH 6.8 and 7.4. CS-M1 regenerated poorly from CS-M1/S at pH 6.8.

Conclusions: Simple Eudragit micrparticles and Eudragit-caoted conjugate microparticles, prepared by the present methods, were found in vitro to be possibly useful as the delivery systems of PD to the lower intestine, although there were differences in their release rate and morphological features.  相似文献   

9.
This study was performed to determine the antimicrobial and antibiofilm activities of silver nanoparticles (AgNPs) biosynthesised using Streptomyces griseorubens AU2 isolated from soil. The antimicrobial activity of the AgNPs was determined by agar well diffusion, disc diffusion and broth microdilution methods. Diameters of the zone of inhibition results clearly displayed that the microbially biosynthesised AgNPs have potent antimicrobial activity against Candida albicans, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) of the nanoparticles that had been determined by broth microdilution method were found to be 20 and 50 µg/ml for C. albicans, B. subtilis and S. aureus; 10 and 20 µg/ml for E. coli and P. aeruginosa, respectively. For determining the effect of AgNPs on biofilm formation under in vitro conditions, MIC and subMICs were studied on P. aeruginosa and S. aureus biofilms by using microplate biofilm assay. Treatment of the AgNPs resulted in a decrease in the biofilm formation of S. aureus and P. aeruginosa as 26.52 and 25.50%, respectively. As a result of this study, it can be suggested that actinobacterially synthesised AgNPs have an effective potential to be used for pharmaceutical applications against multi‐resistant microorganisms.Inspec keywords: silver, nanoparticles, nanomedicine, antibacterial activity, biomedical materials, microorganismsOther keywords: antimicrobial potentials, antibiofilm potentials, silver nanoparticles, antimicrobial activity, antibiofilm activity, Streptomyces griseorubens AU2, disc diffusion, microdilution method, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, nanoparticle minimum inhibitory concentration, nanoparticle minimum lethal concentration, biofilm formation, in vitro conditions, microplate biofilm assay, pharmaceutical applications, multiresistant microorganisms, Ag  相似文献   

10.
The emergence of multidrug resistant bacteria, especially biofilm‐associated Staphylococci, urgently requires novel antimicrobial agents. The antibacterial activity of ultrasmall gold nanoparticles (AuNPs) is tested against two gram positive: S. aureus and S. epidermidis and two gram negative: Escherichia coli and Pseudomonas aeruginosa strains. Ultrasmall AuNPs with core diameters of 0.8 and 1.4 nm and a triphenylphosphine‐monosulfonate shell (Au0.8MS and Au1.4MS) both have minimum inhibitory concentration (MIC) and minimum bactericidal concentration of 25 × 10?6m [Au]. Disc agar diffusion test demonstrates greater bactericidal activity of the Au0.8MS nanoparticles over Au1.4MS. In contrast, thiol‐stabilized AuNPs with a diameter of 1.9 nm (AuroVist) cause no significant toxicity in any of the bacterial strains. Ultrasmall AuNPs cause a near 5 log bacterial growth reduction in the first 5 h of exposure, and incomplete recovery after 21 h. Bacteria show marked membrane blebbing and lysis in biofilm‐associated bacteria treated with ultrasmall AuNP. Importantly, a twofold MIC dosage of Au0.8MS and Au1.4MS each cause around 80%–90% reduction in the viability of Staphylococci enveloped in biofilms. Altogether, this study demonstrates potential therapeutic activity of ultrasmall AuNPs as an effective treatment option against staphylococcal infections.  相似文献   

11.
In this work, for the first time, zein nanofiber mats loaded with ethanol extracts propolis (EEP) were successfully produced. Raw propolis was extracted by ethanol 70% and total flavonoid content was estimated by aluminum chloride colorimetric method. The anti-microbial activity of the EEP was investigated and compared with amoxicillin via zone of inhibition test against various microorganisms included gram-positive: Staphylococcus aureus, Staphylococcus epidermidis, gram-negative: Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa and fungus: Candida albicans. The EEP showed activity only against gram-positive types and fungus, whereas no activity was observed against gram-negative types. Electrospun zein nanofiber was obtained from 70% ethanolic solutions included different content of zein, 15–40?wt.%. The SEM images revealed a smooth ribbon-like morphology for zein nanofibers without any beads in zein content more than 25?wt.%. As well, the SEM images of electrospun zein nanofibers containing different content of propolis (0–40?wt.% based on the zein content) disclosed the increase in the average size of fibers with propolis content from 264 to 419?nm. This increasing was more probably due to the reduction in ionic conductivity of zein solutions with propolis content. The proteinic nature of zein along with the antimicrobial activity and the herbal nature of the propolis make the obtained mats promising candidate for more evaluation in wound healing study.  相似文献   

12.
A matrix based on chitosan lactate and poloxamer 407 was evaluated as a delivery system for the vaginal administration of the antifungal drug econazole. The matrix was investigated both containing the pure drug and after introducing microparticles of Eudragit RS 100 containing econazole. Eudragit RS 100 microparticles were prepared using an emulsion-extraction method and dispersed in a solution containing chitosan lactate (2% w/w) and poloxamer 407 (1.7% w/w). The microparticles, obtained with a yield of 64% w/w and an encapsulation efficiency of 42% w/w, had a diameter of less than 2 μm and a drug loading of 13% w/w. The compressed matrices, characterized by DSC, swelling, erosion, release and mucoadhesion studies, had behaviours dependent on the relative amounts of the contained microparticles. The matrix without microparticles (MECN) showed zero-order release kinetics, with a maximum drug-release of 60% w/w, while those containing 50 or 75% w/w microparticles showed a diffusion controlled release up to 8 and 16 h, respectively, and a linear trend after those time intervals, caused by the erosion process, which allowed reaching a drug-release of approximately 100% w/w at 22 h. In in vitro experiments, the matrices were mucoadhesive and active in inhibiting the growth of Candida albicans 796.  相似文献   

13.
Objectives: The aim of this research was to design a controlled release, spray dried, mupirocin calcium-loaded microparticles (MP) with acrylic polymer and assess the influence of a feed solvent at preselected drug:polymer proportions (1:5 and 2:1 (w/w)) on the performance and stability of the prepared MP.

Methods: Physicochemical properties of MP were assessed using modulated differential scanning calorimetry (MDSC), and thermogravimetric analyses (TGA), Fourier transformed infrared spectroscopy (FTIR) and X-ray analyses and were correlated with drug release. Morphology and particle size were determined using low-angle laser light scattering and a scanning electron microscope. A time-kill assay was conducted on two strains of Staphylococcus aureus to evaluate the antimicrobial activity of MP.

Results and discussion: The MP formed solid dispersions without apparent drug crystallization. Drug-polymer miscibility, morphology, drug release and consequently antimicrobial activity were dependent on drug loading (DL) and the used solvent. The superior control of drug release from MP was achieved for the higher DL (2:1 (w/w) drug:polymer proportion) using solvents in the following order: methanol ≈ methanol:ethanol (50:50, w/w) > isopropanol:acetone (40:60, w/w). Moreover, a time-kill assay performed on S. aureus (ATCC 29213) and methicillin-resistant S. aureus strains confirmed the prolonged release and preservation of antimicrobial activity of the microencapsulated drug. The physical aging of the solid dispersion after 10 months of storage had negligible impact on the MP performance.

Conclusions: Acrylic-based MP were confirmed as suitable microcarriers for prolonged drug release using a well-established spray drying technique, while solvent influence was strongly related to the DL employed.  相似文献   

14.
In this study, polycaprolactone (PCL) microfibrous scaffolds with berberine were fabricated to mimic the natural extracellular matrix (ECM) architecture and provide antimicrobial activity for annulus fibrosus tissue engineering. Morphological characterization showed that there was a significant decrease of the average fiber diameter in the berberine-loaded microfibrous scaffolds (B-MFS, 0.40 ± 0.02 μm) compared with that of the non-drug-loaded microfibrous scaffolds (MFS, 1.89 ± 0.15 μm). The antimicrobial activity, drug release profile, and biocompatibility of the scaffolds were evaluated. The B-MFS displayed excellent antimicrobial activities against Gram-positive bacteria (S. aureus 6538), Gram-negative bacteria (E. coli 15597), fungus (C. albicans 10231) and drug-resistant bacteria (methicillin-resistant S. aureus BAA-811, or MRSA BAA-811). After seeding with porcine AF cells, the in vitro biocompatibility of the scaffolds was determined by measuring cell attachment, cell proliferation, and ECM production. Total cell number, sGAG and collagen content gradually increased from day 1 to day 7 in both groups. When compared to MFS, the B-MFS group displayed higher levels of cell proliferation throughout the experimental period. These results indicate that PCL microfibrous loaded with berberine are novel biocompatible scaffolds with a broad-spectrum antimicrobial activity for AF tissue engineering.  相似文献   

15.
Active packaging is an alternative to preserve perishable food. In this work, polyethylene antimicrobial active films containing different levels of triclosan (0, 2000 and 4000 mg kg?1) were developed by extrusion. The films' efficacies were evaluated against Escherichia coli, Staphylococcus aureus, Listeria innocua, Salmonella choleraesuis and Pseudomonas aeruginosa growth using agar diffusion test and by monitoring the inhibition of E. coli and S. aureus inoculated on sliced cooked ham. The mechanical characteristics of the films were also evaluated with Universal Test Machine (Instron). The incorporation of triclosan did not affect the mechanical properties of antimicrobial films compared to the control film. The average film thickness was 82.0 µm and the tensile strength and elongation to break were 30.3 N and 46.2%, respectively. Films containing triclosan showed an antimicrobial effect in vitro against E. coli and S. aureus, with formation of an inhibition halo for both. However, this result was not observed for L. innocua, S. choleraesuis and P. aeruginosa, although, a decrease in colony density occurred around the film for both incubation temperatures (7 ± 2°C and 35 ± 2°C). Sliced ham packed with the antimicrobial films showed a reduction of 1.5 logarithmic cycles in comparison to ham in contact with a control film after 12 days of storage at 7 ± 2°C, for E. coli and S. aureus. Antimicrobial films present potential for application as active packaging materials, as they showed effective against some pathogenic microorganisms that can be transmitted by foods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
This study discusses the possibility of in situ generation of Ag nanoparticles on polyester fabric by photoreduction of Ag+ ions with deposited TiO2 nanoparticles in the presence of amino acid alanine and methyl alcohol. The presence of TiO2/Ag nanoparticles on the polyester fiber surface was confirmed by XRD, XPS, and SEM analyses. Such nanocomposite textile material provides excellent antimicrobial activity against Gram-negative bacterium E. coli, Gram-positive bacterium S. aureus, and fungus C. albicans. Maximum microbial reduction was preserved even after ten washing cycles. In spite of satisfactory laundering durability, the release of silver occurred during washing. The leaching of silver was also present when the fabrics were exposed to artificial sweat at pH 5.5 and pH 8.0 for 24 h. In addition to excellent antimicrobial properties, TiO2/Ag nanoparticles imparted maximum UV protection to polyester fabrics.  相似文献   

17.
The sustainable development of natural polysaccharide‐based hybrid composites is highly important for the effective replacement of metal nanoparticles in diverse applications. Here, polypyrrole nanotubes (PPyNTs) were embedded on the surface of aminated gum acacia (AGA) to produce ecofriendly nanocomposites for biomedical applications. The morphology of a PPyNT‐enhanced AGA (PPyNT@AGA) hybrid nanocomposite was studied by scanning electron microscopy and transmission electron microscopy and their affirmed interactions were characterised by X‐ray diffraction, Raman, Fourier transform‐infrared and UV‐visible spectroscopy. Interestingly, the prepared PPyNT@AGA nanocomposite exhibited 90% biofilm inhibition against gram‐negative Pseudomonas aeruginosa, gram‐positive Streptococcus pneumoniae and fungal strain Candida albicans with promising antimicrobial performance. This study establishes the good inhibition of a PPyNT@AGA hybrid composite against various microorganisms. The stability of the nanocomposite coupled with antimicrobial activity enables an effective strategy for diagnosing and controlling pathogens.  相似文献   

18.
The preparation of cross-linked conjugate microparticles of N succinyl-chitosan (Suc) or 6-O-carboxymethylchitin (CM) with mitomycin C (MMC), which showed an adequate size for liver targeting (0.2–3 μm), was attempted by a combination of water-soluble carbodiimide (EDC) coupling and emulsification technique. As for Suc, microparticles with a diameter less than a few micrometers could be obtained easily, while the preparation of CM microparticles (CM-MPs) of the same diameter was not necessarily easy. First, preparation conditions were compared for CM-MPs, and some conditions gave CM-MPs with a diameter less than a few micrometers. As to CM-MMC conjugate microparticles, the method by addition of EDC after emulsification using CM with low molecular weight (CML) gave more appropriate microparticles with a mean diameter of 0.97 μm (CML-MP-MMC). Suc-MMC conjugate microparticles adequate for liver targeting could be produced by the addition of EDC both before and after emulsification; especially, the conjugate microparticles with a mean diameter of 0.45 μm (Suc-MP-MMC) were derived by the addition of EDC before emulsification. Suc-MP-MMC exhibited a higher drug content than CML-MP-MMC. CML-MP-MMC and Suc-MP-MMC exhibited 50% drug release times of 2.87 h and 42.1 h, respectively.  相似文献   

19.
Cinnamaldehyde and eugenol were investigated for their antimicrobial activity against 10 pathogenic and spoilage bacteria and three strains of yeast, using an agar‐well diffusion assay. The minimum inhibitory concentrations (MICs) of these compounds were determined using an agar dilution method. Finally, cinnamaldehyde‐incorporated and eugenol‐incorporated methyl cellulose films were prepared to obtain active antimicrobial packaging materials. These antimicrobial cellulose‐based packaging films were investigated for antimicrobial activity against target microorganisms using both an agar‐disc diffusion technique and a vapour diffusion technique. At a concentration of 50 µl/ml, cinnamaldehyde and eugenol revealed antimicrobial activity against all test strains. They showed zones of inhibition, ranging from 8.7 to 30.1 mm in diameter. Eugenol and cinnamaldehyde possessed ‘moderate?strong inhibitory’ and ‘strong?highly strong inhibitory’ characteristics, respectively. With MICs of 0.78?50 µl/ml, cinnamaldehyde and eugenol also inhibited the growth of all test microorganisms. Among the test microorganisms, Aeromonas hydrophila and Enterococcus faecalis were the most sensitive to cinnamaldehyde and eugenol. Cinnamaldehyde showed lower MICs against all test strains than those of eugenol. In an agar‐disc diffusion assay, cellulose‐based film containing cinnamaldehyde or eugenol totally failed to exhibit a clear inhibitory zone. However, it showed positive activity against all selected test strains in terms of size and enumeration of microbial colonies in a vapour diffusion assay. This study shows the potential use of cinnamaldehyde and eugenol for application in antimicrobial packaging film or coating. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
ABSTRACT

Vancomycin (VCN) is a glycopeptide antibiotic that is effective in the treatment of gram-positive bacterial infections, but mainly reserved for methicilin resistant Staphylococcus aureus. It is, however, ineffective against intracellular bacteria and hence a particulate form of VCN would be required. Bovine serum albumin (BSA) microspheres of VCN with a mean particle size of 5 ± 1.6 μm were used. Human microvascular endothelial cells internalized both S. aureus and VCN microspheres in a time and concentration-dependent manner, however, the uptake was inhibited by cytochalasin D. Action of VCN on S. aureus in the intracellular microenvironment decreased the bacterial load considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号