首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study has been made of the effects of pigeon pea starch obtained from the plant Cajanus cajan (L) Millisp. (family Fabaceae) and plantain starch obtained from the unripe fruit of Musa paradisiaca L. (family Musaceae) on the compressional, mechanical, and disintegration properties of paracetamol tablets in comparison with official corn starch BP. Analysis of compressional properties was done by using density measurements, and the Heckel and Kawakita equations, whereas the mechanical properties of the tablets were evaluated by using tensile strength (T--a measure of bond strength) and brittle fracture index (BFI--a measure of lamination tendency). The ranking for the mean yield pressure, P(y), for the formulations containing the different starches was generally corn < pigeon pea < plantain starch while the ranking for P(k), an inverse measure of the amount of plasticity, was pigeon pea < plantain < corn starch, which indicated that formulations containing corn starch generally exhibited the fastest onset of plastic deformation, whereas those formulations containing pigeon pea starch exhibited the highest amount of plastic deformation during tableting. The tensile strength of the tablets increased with increase in concentration of the starches while the Brittle Fracture Index decreased. The ranking for T was pigeon pea > plantain > corn starch while the ranking for BFI was corn > plantain > pigeon pea starch. The bonding capacity of the formulations was in general agreement with the tensile strength results. The disintegration time (DT) of the formulation increased with concentration of plantain and corn starches but decreased with concentration of pigeon pea starch. The general ranking of DT values was plantain < pigeon pea < corn starch. Notably, formulations containing pigeon pea starch exhibited the highest bond strength and lowest brittleness, suggesting the usefulness of pigeon pea starch in producing strong tablets with minimal lamination tendency. Plantain starch, on the other hand, would be more useful where faster disintegration of tablet is desired. The results show that the starches could be useful in various formulations depending on the intended use of the tablets with the implication that the experimental starches can be developed for commercial purposes.  相似文献   

2.
A study was made of the compressional characteristics of native and pregelatinized forms of sorghum, plantain, and corn starches and the mechanical properties of their tablets. Compressional characteristics were analyzed using density measurements and the Heckel and Kawakita plots. Pregelatinized starches exhibited more densification than native starches during die filling and at low pressures. The ranking for the mean yield pressure (Py) values for the starches was plantain < corn < sorghum, with the pregelatinized starches having lower values than the native starches. The ranking for the values of another pressure term, Pk--an inverse measure of plasticity, was corn < plantain < sorghum, but with the native starches having the lower values. For the tablets, the ranking for values of tensile strength (T) was corn > plantain > sorghum, while the ranking for the brittle fracture index (BFI) was plantain > corn > sorghum. Tablets made from pregelatinized starches had lower T and BFI values than those made from native starches. The results suggest that pregelatinization of the starches facilitated faster onset of plastic deformation but reduced the amount of plastic deformation which occurred during the compression process.  相似文献   

3.
Abstract

This study demonstrates the differences obtained when using different corn starch products as both binder and disintegrant in pharmaceutical tablets. Formulations made with Fluftex W, Tablet White and Purity 21 starches were compared. In addition, Avicel PH101 was used in this study as a benchmark component whose properties are well understood.

Four test formulations containing hydrochlorothiazide were prepared by wet granulation. Starch was incorporated in both powder and paste form. All granulations were found to possess similar traits when evaluated based upon geometric mean diameter, particle size distribution, bulk/tap densities, powder flow rate and surface characteristics.

Tablets prepared from these granulations were shown to be similar when evaluated for degree of friability, weight and content uniformity. All starch formulations disintegrated within 30 seconds and produced similar dissolution profiles. Tablets produced with Avicel, however, were found to exhibit significantly longer disintegration times than the starch formulations. In addition, these tablets displayed a dissolution profile that was significantly different than the starch formulations, particularly during the earlier stages of the dissolution process.

When monitoring compression and ejection forces required to produce tablets of the same degree of hardness (≈6kg), Fluftex W and Tablet White granulations were found to use significantly lower forces than the Purity 21 granulation. This may be indicative of Fluftex W and Tablet White's superiority over Purity 21 in terms of binder capacity.  相似文献   

4.
Abstract

This study demonstrates the differences obtained when using different corn starch products as both binder and disintegrant in pharmaceutical tablets. Formulations made with Fluftex W, Tablet White and Purity 21 starches were compared. In addition, Avicel PH101 was used in this study as a benchmark component whose properties are well understood.

Four test formulations containing hydrochlorothiazide were prepared by wet granulation. Starch was incorporated in both powder and paste form. All granulations were found to possess similar traits when evaluated based upon geometric mean diameter, particle size distribution, bulk/tap densities, powder flow rate and surface characteristics.

Tablets prepared from these granulations were shown to be similar when evaluated for degree of friability, weight and content uniformity. All starch formulations disintegrated within 30 seconds and produced similar dissolution profiles. Tablets produced with Avicel, however, were found to exhibit significantly longer disintegration times than the starch formulations. In addition, these tablets displayed a dissolution profile than was significantly different than the starch formulations, particularly during the earlier stages of the dissolution process.

When monitoring compression and ejection forces required to produce tablets of the same degree of hardness (≈6kg), Fluftex W and Tablet White granulations were found to use significantly lower forces than the Purity 21 granulation. This may be indicative of Fluftex W and Tablet White's superiority over Purity 21 in terms of binder capacity.  相似文献   

5.
Food induced viscosity can delay disintegration and subsequent release of API from solid dosage form which may lead to severe reduction in the bioavailability of BCS type III compounds. Formulations of such tablets need to be optimized in view of this postprandial viscosity factor. In this study, three super disintegrants, croscarmellose sodium (CCS), cross-linked polyvinylpolypyrrolidone (CPD), and sodium starch glycolate (SSG) were assessed for their efficiency under simulated fed state. Tablets containing these disintegrants were compressed at 10 and 30?KN, while taking lactose as a soluble filler. In addition to other compendial tests, disintegration force of these formulations was measured by texture analysis. Comparison of parameters derived from force – time curves revealed a direct relation of maximum disintegration force (Fmax) and disintegration force development rate (DFDR) with compressional force in fasted state, whereas an inverse relationship of Fmax and DFDR with compressional force was observed in fed state. The gelling tendency of disintegrants influenced the rate of release of API in simulated fed and fasted states when compressional force was changed. These observations recommend the evaluation of formulations in simulated fed state, in the development stage, with an objective of minimizing the negative impact of food induced viscosity on disintegration. Use of disintegrants that act without gelling or can counteract the effect of gelling is recommended for tablet formulations with reduced disintegration time (DT) and mean dissolution time (MDT) in fed state, respectively.  相似文献   

6.
Abstract

Chitin and chitosan as disintegrants in paracetamol tablets were evaluated and compared to four commonly used disintegrants. Tablets containing chitosan showed faster disintegration, greater dissolution and was slightly softer than those containing chitin. An increment in concentration of these polymers caused markedly faster disintegration and better dissolution while an increase in compressional force showed opposite effects. Aging slightly altered the disintegration and dissolution. Tablets containing 7% of chitosan disintegrated within one minute which was much faster than those containing corn starch and microcrystalline cellulose but slightly slower than those containing sodium starch glycolate and croscamellose sodium. However, their dissolution profiles were non-significantly different from those of the latter ones.

Crystallinity, degree of acetylation, chain length and particle size were attributed to the efficiency of chitin and chitosan. Moisture sorption and water uptake were found to be the major mechanisms of disintegration while dissolution related to the swelling capacity.  相似文献   

7.
Abstract

Several granulations consisting of α-lactose monohydrate 200 mesh and native starch (corn, potato, rice or tapioca) were prepared. The influence of starch concentration, storage temperature and relative humidity on the physical properties of the tablets prepared from these granulations was estimated. Two granulations, which resulted in tablets with adequate initial values of crushing strength and disintegration time and with an acceptable physical stability were selected as standard granulations. The selected standard granulations were evaluated by incorporating a drug (diazepam, 2 mg or mebendazole, 100 mg). The tablet properties were determined one day after preparation. The crushing strength, the disintegration time and the microbiological quality were also measured after storage under tropical conditions. Both selected formulations proved to be adequate for the preparation of tablets by wet granulation, suitable for use in tropical countries.  相似文献   

8.
This study demonstrates the differences obtained when using different corn starch products as both binder and disintegrant in pharmaceutical tablets. Formulations made with Fluftex W, Tablet White and Purity 21 starches were compared. In addition, Avicel PH101 was used in this study as a benchmark component whose properties are well understood.

Four test formulations containing hydrochlorothiazide were prepared by wet granulation. Starch was incorporated in both powder and paste form. All granulations were found to possess similar traits when evaluated based upon geometric mean diameter, particle size distribution, bulk/tap densities, powder flow rate and surface characteristics.

Tablets prepared from these granulations were shown to be similar when evaluated for degree of friability, weight and content uniformity. All starch formulations disintegrated within 30 seconds and produced similar dissolution profiles. Tablets produced with Avicel, however, were found to exhibit significantly longer disintegration times than the starch formulations. In addition, these tablets displayed a dissolution profile than was significantly different than the starch formulations, particularly during the earlier stages of the dissolution process.

When monitoring compression and ejection forces required to produce tablets of the same degree of hardness (≈6kg), Fluftex W and Tablet White granulations were found to use significantly lower forces than the Purity 21 granulation. This may be indicative of Fluftex W and Tablet White's superiority over Purity 21 in terms of binder capacity.  相似文献   

9.
This study demonstrates the differences obtained when using different corn starch products as both binder and disintegrant in pharmaceutical tablets. Formulations made with Fluftex W, Tablet White and Purity 21 starches were compared. In addition, Avicel PH101 was used in this study as a benchmark component whose properties are well understood.

Four test formulations containing hydrochlorothiazide were prepared by wet granulation. Starch was incorporated in both powder and paste form. All granulations were found to possess similar traits when evaluated based upon geometric mean diameter, particle size distribution, bulk/tap densities, powder flow rate and surface characteristics.

Tablets prepared from these granulations were shown to be similar when evaluated for degree of friability, weight and content uniformity. All starch formulations disintegrated within 30 seconds and produced similar dissolution profiles. Tablets produced with Avicel, however, were found to exhibit significantly longer disintegration times than the starch formulations. In addition, these tablets displayed a dissolution profile that was significantly different than the starch formulations, particularly during the earlier stages of the dissolution process.

When monitoring compression and ejection forces required to produce tablets of the same degree of hardness (≈6kg), Fluftex W and Tablet White granulations were found to use significantly lower forces than the Purity 21 granulation. This may be indicative of Fluftex W and Tablet White's superiority over Purity 21 in terms of binder capacity.  相似文献   

10.
Chitin and Chitosan as Disintegrants in Paracetamol Tablets   总被引:2,自引:0,他引:2  
Chitin and chitosan as disintegrants in paracetamol tablets were evaluated and compared to four commonly used disintegrants. Tablets containing chitosan showed faster disintegration, greater dissolution and was slightly softer than those containing chitin. An increment in concentration of these polymers caused markedly faster disintegration and better dissolution while an increase in compressional force showed opposite effects. Aging slightly altered the disintegration and dissolution. Tablets containing 7% of chitosan disintegrated within one minute which was much faster than those containing corn starch and microcrystalline cellulose but slightly slower than those containing sodium starch glycolate and croscamellose sodium. However, their dissolution profiles were non-significantly different from those of the latter ones.

Crystallinity, degree of acetylation, chain length and particle size were attributed to the efficiency of chitin and chitosan. Moisture sorption and water uptake were found to be the major mechanisms of disintegration while dissolution related to the swelling capacity.  相似文献   

11.
The purpose of the present work was to evaluate polyvinyl alcohols (PVAs) as a mucoadhesive polymer for mucoadhesive buccal tablets prepared by direct compression. Various polymerization degree and particle diameter PVAs were investigated for their usability. The tensile strength, in vitro adhesive force, and water absorption properties of the tablets were determined to compare the various PVAs. The highest values of the tensile strength and the in vitro adhesive force were observed for PVAs with a medium viscosity and small particle size. The optimal PVA was identified by a factorial design analysis. Mucoadhesive tablets containing the optimal PVA were compared with carboxyvinyl polymer and hydroxypropyl cellulose formulations. The optimal PVA gives a high adhesive force, has a low viscosity, and resulted in relatively rapid drug release. Formulations containing carboxyvinyl polymer had high tensile strengths but short disintegration times. Higher hydroxypropyl cellulose concentration formulations had good adhesion forces and very long disintegration times. We identified the optimal characteristics of PVA, and the usefulness of mucoadhesive buccal tablets containing this PVA was suggested from their formulation properties.  相似文献   

12.
Enset and potato starches have been compared as binding agents and disintegrants in tablets made with paracetamol and chloroquine phosphate. Tablet crushing strengths, friabilities and disintegration times have been measured. The results show that enset starch can be used both as a binding agent and disintegrant. It has a better binding ability than potato starch, giving tablets of lower porosity. However because of this, tablets containing enset starch disintegrate more slowly.  相似文献   

13.
An automatic disintegration tester was developed and used to explore disintegration mechanism and times of rapidly disintegrating tablets. DT50, the time required for a tablet to decrease in its thickness by half, allowed an unbiased determination of disintegration time. Calcium silicate concentration, Explotab? concentration, DiPac?/Xylitab? ratio as fillers, and compression pressure were evaluated using a central composite model design analysis for their DT50, tensile strength, and friability. Tablets that could reasonably be handled (friability <10%) could be produced. The expansion coefficient (n) and the exponential rate constant (k) for disintegrating tablets, originally measured by Caramella et al. using force kinetics, could be determined from axial displacement data measured directly without the need to assume that disintegration force generation was indicative of changes in tablet volume. The n values of tablets containing calcium silicate, Ditab? and/or Xylitab?, magnesium stearate, and Explotab? suggested that the amount of Explotab? was not a significant factor in determining the disintegration mechanism; however, the type of disintegrant used did alter the n value. Primojel? and Explotab?, which are in the same class of disintegrants, exhibited similar DT50, n, and k. Polyplasdone? XL exhibited a much higher n, while yielding faster DT50, suggesting that its performance is more dependent on facilitating the interfacial separation of particles. AcDiSol? showed no apparent moisture sensitivity in regards to disintegration efficiency. The use of the novel apparatus proved to be useful in measuring disintegration efficiency of rapidly disintegrating tablets and in providing valuable information on the disintegration phenomena.  相似文献   

14.
Soy polysaccharide, a group of high molecular weight polysaccharides obtained from soy beans, was evaluated as a disintegrant in tablets made by direct compression using lactose and dicalcium phosphate dihydrate as fillers. A cross-linked sodium carboxy-methyl cellulose and corn starch were used as control disintegrants. Parameters studied were compressibility, friability and disintegration times. Dissolution studies were conducted on tablets containing hydrochlorothiazide as a model drug of low water solubility. Soy polysacchardie performs well as a disintegrating agent in direct compression formulations with results paralleling those of cross-linked CMC at the 2% level and superior to corn starch at the 8% level. Dissolution rates of the drug from tablets were rapid, particularly at the 5% level and were not adversely affected by aging at room temperatures.  相似文献   

15.
In this work, the influence of three starches (A1, A2 and A3) on the mechanical, morphological and thermal properties of poly(ε-caprolactone) (PCL) was investigated in PCL/starch blends of 0/100, 75/25, 50/50 and 25/75 w/w%. The addition of starch to PCL reduced the tensile stress at break, the elongation at break and Young’s modulus. The starches with linear chemical structures (A1 and A3) had lower values of tensile strength and higher values of elongation at break. Light microscopy indicated that the starches and PCL were immiscible. Thermal analysis showed that the 75/25, 50/50, and 25/75 w/w% blends containing linear starches had greater crystallinity than branched starch, an arrangement that may favor their biodegradation.  相似文献   

16.
Measurements have been made of the effects produced on the “plasto-elasticity” ratio, ER/SR, tensile strength and disintegration of Sta-Rx, Emcompress and lactose as a result of adding increasing amounts of dika fat and stearic acid respectively to the powders and compressing to form tablets. Increase in their proportions caused an increase in the ER/SR raio but decreased the tensile strength and disintegration rate of the resulting tablets. The powders containing dika fat exhibited marginally higher ER/SR ratio values but its tablets had lower tensile strengths and shorter disintegration times than tablets containing stearic acid. The tensile strength of the tablets was found to be inversely proportional to ER/SR.  相似文献   

17.
Abstract

The effect of different types and concentrations of some starches as disintegrants on the properties of aspirin tablets as a model for double compressed tablets was studied. The formulated tablets were evaluated using the U.S.P. official tests and some other selected nonofficial tests. These tests include: uniformity of weight, uniformity of content, disintegration, dissolution, hardness, friability and thickness. Maize starch was found to be the most suitable disintegrant for the formulation of double compressed tablets while rice starch was the worst disintegrant, in this study, as it significantly increased the hardness of tablets and showed a prolonged disintegration time as well as a poor dissolution rate. increasing the starch content of tablets resulted in a marked increase in their dissolution rate.  相似文献   

18.
Different types of crosslinked starches and pregelatinized-crosslinked starches were evaluated for their use as hydrophilic matrices. Some fundamental properties of these chemically modified starches, e.g. granule swelling power and viscosity of the dispersion in function of pH and ionic strength, were studied. Dissolution tests and the rate and amount of water uptake were evaluated on tablets containing theophylline and modified starch (40/60 w/w), compressed on an instrumented tablet press at three different pressures (50,200 and 300 MPa.). Theophylline releasing profiles were determined using the paddle system at a rotational speed of 50 rpm Water, simulated gastric fluid, and simulated intestinal fluid were used as dissolution media. Crosslinked starches showed a poor swelling power and dispersion viscosity in comparison to pregelatinized starch and pregelatinized-crosslinked starches. The pregelatinized-crosslinked starches developed less swelling power than the pregelatinized starch, but they showed higher dispersion viscosity than the pregelatinized starch. The viscosity of all starch dispersions was not affected by ionic strength. An alkaline pH dramatically increased the dispersion viscosity of pregelatinized starch and pregelatinized-crosslinked starches. Drug dissolution rate was lower for tablets containing pregelatinized starch than for tablets containing pregelatinized-crosslinked starches. This phenomenon can be related to the rate and amount of water uptake. The dissolution rate seemed not to be influenced by the compression force nor by the composition of the dissolution media. The results indicate that crosslinked starches, either pregelatinized or not, are not suitable as sustained release agents.  相似文献   

19.
Abstract

The effects of binders and moisture content on the disintegration time, friability and hardness of paracetamol and orphenadrine citrate tablets at different storage conditions were investigated. These parameters were determined after one, four and sixteen weeks of storage

The use of starch, ethocel or CMC Na as binders gave unsatisfactory tablets because of their high friability. Unacceptably high disintegration times were obtained, particularly at higher storage temperatures when PVP was used. Capping and yellow spotting observed in gelatin formulations makes this binder unsuitable for use. Methocel granulations yielded satisfactory tablets with acceptable disintegration time, hardness and friability and were unaffected by storage at different conditions of temperature and humidity  相似文献   

20.
Objective: This work evaluates the functionalities of different superdisintegrants (SD) for manufacturing orodispersible mini tablets (ODMT) by direct compression.

Methods: Twenty-three formulations varying in SD type, concentration, and lubricant were used to manufacture ODMT. The ODMT were then characterized for the following properties: friability, porosity, tensile strength, in vivo and in vitro disintegration time (DT).

Results: The results show that the presence, type, and concentration of SD did not influence friability, porosity, or tablet tensile strength. With regards to in vivo DT, only cross-linked poly (vinyl pyrrolidone) improved DT in all the tested formulations. Results also showed that when using microcrystalline cellulose (MCC) above 20% in the formulation, DT is longer. Cross-linked carboxymethyl cellulose accelerates DT when the MCC content is less than 20%. As for cross-linked carboxymethyl starch and calcium alginate showed no improvement on DT. Results for in vitro DT were all shorter than in vivo results and there was no correlation with the in vivo evaluation.

Conclusions: This study shows that there is a need to develop better in vitro testing that precisely simulates in vivo conditions and that are adapted to ODMT. This standardization of the test methods for ODMTs must be accompanied by an improvement in the comprehension of SD mechanisms.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号