首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to characterize a buccal mucoadhesive film using lidocaine and its hydrochloride salt (LDHCL) as a model drug. Buccal films were developed using carbopol 971P as a mucoadhesive polymer, and glycerol as a plasticizer. Scanning Electron Microscope, Differential Scanning Calorimetry, X-ray powder diffraction, and Fourier Transform Infra Red techniques were used to characterize the mucoadhesive films. Bioadhesive properties were evaluated using the Universal Instron Instrument with chicken pouch as a model tissue.

LDHCL and its base were present in carbopol 971P films in a molecular dispersion state without exerting any effect on the glass transition of these films. The mucoadhesive force between the chicken pouches and the film containing glycerol did not change by time during the tested period (1-20 min), while increased with increasing the amount of glycerol (10-40% w/w of polymer content). Furthermore, a linear increase in the mucoadhesive force was accompanied by the increase in the film thickness, while a linear decrease followed by plateau was obtained when loading the patch with LDHCL at concentration above 1 mg/cm2.

Loading carbopol film with lidocaine base, in a concentration up to 6 mg/cm2 decreased linearly the mucoadhesive properties, which could be attributed to salt formation between the acidic carboxylic moiety of carbopol and basic lidocaine.  相似文献   

2.
The study evaluated different mucoadhesive polymeric hydrogels for nasal delivery of acyclovir. Gels containing poly-N-vinyl-2-pyrrolidone (PVP) were prepared with crosslinking achieved by irradiation with a radiation dose of 15 kGy being as efficient as 20 kGy. Gels containing chitosan and carbopol were also evaluated. The mucoadhesive properties of gels were measured by a modification of a classical tensile experiment, employing a tensile tester and using freshly excised sheep nasal mucosa. Considering the mucoadhesive force, chitosan gel and gel prepared with 3% PVP in presence of polyethylene glycol (PEG) 600 were the most efficient. The in vitro drug release depended on the gel composition. Higher release rates were obtained from PVP gels compared to chitosan or carbopol gels. The release rate of drug from PVP gels was increased further in presence of PEG or glycerol. Histopathological investigations proved that the PVP was a safe hydrogel to be used for mucosal delivery. The PEG in gel formulations caused less damages to the nasal mucosal compared to formulation containing glycerol.  相似文献   

3.
The aim of this study was to develop a controlled release buccal mucoadhesive delivery system for systemic delivery of lidocaine hydrochloride as a model drug. In vitro release and buccal permeation as well as in vivo permeation of LDHCL patches were evaluated. The drug release and the permeability of the drug through porcine buccal mucosa were evaluated using Franz diffusion cell. In vivo evaluation of patches was carried out on rabbits as an animal model. Patches were designed in two fashions, bi-layer (BLP; LDHCL, carbopol, glycerin, pentration enhancer, and Tween 20 as the first layer; and EVA as the second layer) and triple layer (TLP; LDHCL, carbopol and glycerin as the first layer; carbopol, glycerin, pentration enhancer and pluronic F-127 as the middle layer; and EVA as the third layer) patches, respectively. Presence of oleic acid as PE in the formulation significantly enhanced the in vitro permeability of LDHCL (p<0.05), while propylene glycol monolaurate as PE suppressed it (p<0.05). The in vivo evaluation in rabbits showed that TLP had significantly higher Cmax and AUC0-8 (p<0.05) than BLP. Furthermore, TLP showed a well-controlled drug plasma concentration over 6 hr which was significantly longer than BLP (p<0.05). Patches were well adhered to buccal mucosa of the rabbits over the 8-hr study period. It was postulated that the hypothetical release mechanism of the drug and oleic acid from TLP was controlled by their diffusion through the swollen polymer network and micelled gel.  相似文献   

4.
The study evaluated different mucoadhesive polymeric hydrogels for nasal delivery of acyclovir. Gels containing poly-N-vinyl-2-pyrrolidone (PVP) were prepared with crosslinking achieved by irradiation with a radiation dose of 15 kGy being as efficient as 20 kGy. Gels containing chitosan and carbopol were also evaluated. The mucoadhesive properties of gels were measured by a modification of a classical tensile experiment, employing a tensile tester and using freshly excised sheep nasal mucosa. Considering the mucoadhesive force, chitosan gel and gel prepared with 3% PVP in presence of polyethylene glycol (PEG) 600 were the most efficient. The in vitro drug release depended on the gel composition. Higher release rates were obtained from PVP gels compared to chitosan or carbopol gels. The release rate of drug from PVP gels was increased further in presence of PEG or glycerol. Histopathological investigations proved that the PVP was a safe hydrogel to be used for mucosal delivery. The PEG in gel formulations caused less damages to the nasal mucosal compared to formulation containing glycerol.  相似文献   

5.
To improve physical properties and modulate the mucoadhesive hydrogel formulation via cross-linking by radiation, hydrogels were prepared using thermoreversible polymer Pluronic F127 (PF127) and mucoadhesive polymer carbopol 934P (C934P). As a model drug, naproxen was loaded in the hydrogel formulation. Sol-gel transition temperatures of hydrogels were measured by the tube-inversion method. The mucoadhesive potential of each formulation was determined by measuring the force required to detach the formulation from oral mucosal tissue. To strengthen the mechanical properties, the formulations were irradiated using an electronic beam. Drug release from the hydrogels and the cytotoxicity of each formulation were investigated. Sol-gel transition temperatures of the formulations were decreased by the addition of carbopol and were close to body temperature. The mucoadhesive force of the PF127 formulation was increased by addition of carbopol. In vitro release was sustained and the release rate was reduced by the addition of carbopol. After irradiation, the mucoadhesive force was increased about five-fold especially in the case of PF127 23% (9.7 kPa) and in vitro release was not sustained further. In conclusion, the use of a PF127 formulation incorporating a mucoadhesive polymer could effectively and safely improve oral residence time and absorption of naproxen. Irradiated formulations showed permanent cross-linking and improved properties.  相似文献   

6.
Objective: To obtain controlled release of captopril in the stomach, coated, mucoadhesive donut-shaped tablets were designed.

Materials and methods: Donut-shaped tablet were made of different ratios of diluents to polymer or combination of polymers by direct compression method. Top and bottom portions of the tablet were coated with water-insoluble polymer followed by mucoadhesive coating. Time of water penetration, measurement of tensile strength, mucoadhesion studies (static ex vivo and ex vivo wash-off) were taken into account for characterization of respective films. In vitro study has been performed at different dissolution mediums. Optimized batches were also prepared by wet granulation. Stability studies of optimized batches have been performed.

Results: The results of time of water penetration and tensile strength indicated positive response against water impermeation. Mucoadhesive studies showed that film thickness of 0.12?mm was good for retention of tablet at stomach. At pH 1.2, optimized batch of tablet made with hydroxypropyl methyl cellulose (HPMC) E15 as binder showed 80% w/w drug release within 4–5?h with maximum average release of 97.49% w/w. Similarly, maximum average releases of 96.36% w/w and 95.47% w/w were obtained with nearly same dissolution patterns using combination of HPMC E5 and HPMC E50 and sodium salt of carboxy methyl cellulose (NaCMC) 500–600 cPs instead of HPMC E15. The release profiles in the distilled water and pH 4.5 followed the above pattern except deviation at pH 6.8. Stability studies were not positive for all combinations.

Conclusion: Coated, mucoadhesive donut-shaped tablet is good for controlled release of drug in the stomach.  相似文献   

7.
The purpose of this study is to optimize and characterize of chitosan buccal film for delivery of insulin nanoparticles that were prepared from thiolated dimethyl ethyl chitosan (DMEC-Cys). Insulin nanoparticles composed of chitosan and dimethyl ethyl chitosan (DMEC) were also prepared as control groups. The release of insulin from nanoparticles was studied in vitro in phosphate buffer solution (PBS) pH 7.4. Optimization of chitosan buccal films has been carried out by central composite design (CCD) response surface methodology. Independent variables were different amounts of chitosan and glycerol as mucoadhesive polymer and plasticizer, respectively. Tensile strength and bioadhesion force were considered as dependent variables. Ex vivo study was performed on excised rabbit buccal mucosa. Optimized insulin nanoparticles were obtained with acceptable physicochemical properties. In vitro release profile of insulin nanoparticles revealed that the highest solubility of nanoparticles in aqueous media is related to DMEC-Cys nanoparticles. CCD showed that optimized buccal film containing 4% chitosan and 10% glycerol has 5.81?kg/mm2 tensile strength and 2.47?N bioadhesion forces. Results of ex vivo study demonstrated that permeation of insulin nanoparticles through rabbit buccal mucosa is 17.1, 67.89 and 97.18% for chitosan, DMEC and DMEC-Cys nanoparticles, respectively. Thus, this study suggests that DMEC-Cys can act as a potential enhancer for buccal delivery of insulin.  相似文献   

8.
Potato peel is a by‐product of potato‐based food production and seen as a zero‐ or negative‐value waste of which millions of tons are produced every year. Previous studies showed that potato peel is a potential material for film development when plasticized with 10% to 50% glycerol (w/w potato peel). To further investigate potato peel as a film‐forming material, potato peel‐based films containing the plasticizer sorbitol were prepared and investigated on their physicochemical properties in addition to films containing glycerol. Due to sufficient producibility and handling of casted films in preliminary trials, potato peel‐based films containing 50%, 60%, or 70% glycerol (w/w potato peel) and films containing 90%, 100%, or 110% sorbitol (w/w potato peel) were prepared in this study. Generally, with increasing plasticizer concentration, water vapor and oxygen permeability of the films increased. Films containing glycerol showed higher water vapor and oxygen permeabilities than films containing sorbitol. Young's modulus, tensile strength, and elongation at break decreased with increasing sorbitol concentration, whereas no significant effect of plasticizer content on elongation at break was shown in films containing glycerol. Due to crystallization of films containing sorbitol as a plasticizer, potato peel‐based films containing 50% glycerol (w/w) were identified as the most promising films, characterized by a water vapor transmission rate of 268 g 100 μm m?2 d?1 and an oxygen permeability of 4 cm3 100 μm m?2 d?1 bar?1. Therefore, potato peel‐based cast films in this study showed comparable tensile properties with those of potato starch‐based films, comparable water vapor barrier with those of whey protein‐based films, and comparable oxygen barrier with those of polyamide films.  相似文献   

9.
Context: Ciclopirox olamine (CPO) is indicated in the treatment of vaginal fungal infections. The frequent and large dosing of available vaginal CPO creams gives rise to poor compliance amongst females. In such a situation a delivery system capable of providing sustained release of CPO is warranted and can be realized through incorporation of its liposomal formulation into a mucoadhesive gel base. The liposomal formulation would offer sustained release whereas mucoadhesive gel would prolong the contact with vaginal wall; thus avoiding frequent and large dosing.

Objective: The present study aimed at investigating mucoadhesive liposomal CPO gel for vaginal use.

Method: The study embarked on evaluating liposomal CPO and its Carbopol 974®P gel for stability at vaginal pH, release profile, rheological characteristics, mucoadhesive behavior and finally antifungal activity.

Results: The results revealed that CPO liposomes were stable at vaginal pH; its Carbopol gel released 58.75?±?6.4% of CPO at the end of 24?h which suggested sustained release. Rheology via viscometric, oscillatory stress sweep and oscillatory frequency sweep testing of the gel, studied at different temperatures and under different dilutions with vaginal fluid simulant testified pseudoplastic behavior of the gel. It also pointed towards the predominance of elastic behavior of the gel at all the dilutions. The gel exhibited good mucoadhesivity to sheep vaginal tissue. Furthermore, CPO entrapped in liposome too displayed antifungal activity.

Conclusion: The study undertaken recommended Carbopol 974®P gel loaded with CPO liposomes as a potential delivery system for treatment of fungal vaginal infections.  相似文献   

10.
A self-propelling colonoscopic device moving inside the colonic tube should be able to periodically grip safely to the colonic wall as well as to manipulate the generated friction. The feasibility of achieving high grip and friction manipulation by covering the device with mucoadhesive films is experimentally tested. More precisely, the frictional behaviour of mucoadhesive films inside the colonic tube is tested in vitro in porcine colon. It appears that mucoadhesive films generate significantly higher friction than conventional materials (ANOVA p=0, 95% CIs=−3.04, −2.14). The geometry of the film plays a role as well. When holes are, for instance, present in the film geometry and are large enough so that the colonic tissue can wrap their borders, friction can be significantly increased (ANOVA p=0, 95% CIs=−2.53, −1.26). By altering the contact area or the film geometry, friction manipulation can be achieved. Moreover, a simple theoretical model is developed and experimentally verified (R=0.92). The model can be used to estimate the level of the friction generated by three-dimensional configurations of mucoadhesive films as a function of their geometric characteristics and the material properties of the colon.  相似文献   

11.
Context: Nonsteroidal anti-inflammatory drugs (NSAIDs) are administered for pain relief from oral mucositis. However, the systemic administration of NSAIDs is limited due to the side effects of thrombocytopenia.

Objective: To avoid systemic side effects, a matrix type mucoadhesive tablet as a topical application preparation to treat oral aphtha was developed.

Methods: A mixture of hard fat with a low irritant property and mucoadhesive polymers was used as the matrix base, and indomethacin was used as a model drug.

Results: Among the water-soluble polymers, carbopol and xanthan gum increased the adhesive force of tablets prepared by the suspending method, but the tensile strength was not increased. Tablets containing ethylcellulose 10 or 45 (EC10, EC45) from a water-insoluble polymer increased the adhesive force and tensile strength. Tablets prepared by the dissolve-drying method containing EC45 showed a 1.8-fold increase of adhesiveness to the eggshell membrane compared with hard fat tablets, and showed a sustained release of the drug (17%) over an 8?h period. The drug release was increased to 28% by a modification to the dissolve-drying method using EC10.

Conclusions: Since this matrix type tablet has long-acting properties, adhesiveness and low irritating properties, its potential as a newly designed preparation to treat oral aphtha is suggested.  相似文献   

12.
ABSTRACT

This investigation deals with the development of buccal tablets containing chlorhexidine (CHX), a bis-bis-guanide with antimicrobial and antiseptic effects in the oral cavity, and able to adhere to the buccal mucosa to give local controlled release of drug. A mucoadhesive formulation was designed to swell and form a gel adhering to the mucosa and controlling the drug release into the oral cavity.

Some batches of tablets were developed by direct compression, containing different amounts of hydroxypropylmethylcellulose (HPMC) and carbomer; changing the amount ratio of these excipients in formulations, it is possible easily modulate the mucoadhesive effect and release of drug. The in vitro tests were performed using the USP 26/NF paddle apparatus, a specifically developed apparatus, and a modified Franz diffusion cells apparatus. This last method allows a simultaneous study of drug release rate from the tablets and drug permeation through the buccal mucosa.

Similar tests have also been carried out on a commercial product, Corsodyl gel®, in order to compare the drug release control of gel with respect to that of the mucoadhesive tablet, as a formulation for buccal delivery of CHX. While the commercial formulation does not appear to control the release, the formulation containing 15% w/w methocel behaves the best, ensuring the most rapid and complete release of the drug, together with a negligible absorption of the active agent as required for a local antiseptic action in the oral cavity.  相似文献   

13.
The objective of the present study was to study the formulation variables involved in the development of a novel plasterlike preparation (cataplasm) and to optimize important formulation variables with an aim to maximize the in vitro release of the drug with minimum lag time. Cataplasm was prepared by dispersing a model drug (ibuprofen), humectant (glycerol), adhesive (Indopol H100®), polymer (Carbopol C934P®) with other formulation ingredients in a beaker with an open-blade impeller. The paste was cast on a nonocclusive backing membrane and dried overnight. The diffusion of the model drug was studied across a cellulosic membrane using Franz's diffusion cells. The amounts of three formulation variables, carbopol (X1), glycerol (X2), and indopol (X3) were studied at three levels, and a face-centered cubic design was used to maximize the flux. An optimization procedure for maximum flux and minimum lag time predicted a flux of 97.22 mcg/cm2/hr at X1 (2% w/w), X2 (11.75% w/w), and X3 (6% w/w). An experimental patch prepared with the above concentrations yielded a flux of 90.7 mcg/cm2/hr.  相似文献   

14.
Attempting to prepare a convenient bioavailable formulation of vitamin B12 (cyanocobalamin), 17 tablet formulations were prepared by direct compression. Different concentrations of hydroxypropyl methyl cellulose (HPMC), carbopol 971p (CP971p), and chitosan (Cs) were used. The tablets were characterized for thickness, weight, drug content, hardness, friability, surface pH, in vitro drug release, and mucoadhesion. Kinetic analysis of the release data was conducted. Vitamin B12 bioavailability from the optimized formulations was studied on rabbits by the aid of enzyme-linked immunosorbent assay. Neurotone® I.M. injection was used for comparison. HPMC (F1-F4), CP971p (F5-F8), and HPMC/CP971p (F12-F15)-based formulations showed acceptable mechanical properties. The formulated tablets showed maximum swelling indices of 232?±?0.13. The surface pH values ranged from 5.3?±?0.03 to 6.6?±?0.02. Bioadhesive force ranged from 66?±?0.6 to 150?±?0.5?mN. Results showed that CP971p-based tablets had superior in vitro drug release, mechanical, and mucoadhesive properties. In vitro release date of selected formulations were fitted well to Peppas model. HPMC/CP971p-based formulations showed bioavailability up to 2.7-folds that of Neurotone® I.M. injection.  相似文献   

15.
Purpose: To examine effects of polymer types on the mucoadhesive properties of polymer-coated nanostructured lipid carriers (NLCs).

Experiment: Curcumin-loaded NLCs were prepared using a warm microemulsion technique followed by coating particle surface with mucoadhesive polymers: polyethylene glycol400 (PEG400), polyvinyl alcohol (PVA), and chitosan (CS). The physicochemical properties and entrapment efficacy were examined. In vitro mucoadhesive studies were assessed by wash-off test. In addition, the stability of mucoadhesive NLCs in gastrointestinal fluids and the pattern of drug release were also investigated.

Findings: The obtained nanoparticles showed spherical shape with size ranging between 200?nm and 500?nm and zeta potential between ?37 and ?9?mV depending on the type of polymer coating. Up to 80% drug entrapment efficacy was observed. In vitro mucoadhesive studies revealed that PEG-NLCs and PVA-NLCs were adhered strongly to freshly porcine intestinal mucosa, more than 2-fold mucoadhesive compared to CS-NLCs and uncoated-NLCs. The particle size of all polymer-coated NLCs could be maintained in both simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) suggesting good physical stability in physiological fluid. In contrast, uncoated-NLCs showed particle aggregation in SGF. In vitro dissolution studies revealed a fast release characteristic.  相似文献   

16.
Objective: To design and evaluate novel, feasible, safe, mucoadhesive intravaginal tablets of tenofovir disoproxil fumarate (TDF).

Significance: It may provide pre-exposure prophylaxis for women against HIV.

Methods: TDF intravaginal tablets were formulated employing poylvinylpyrrolidone (PVP) as the matrix forming polymer and various mucoadhesive polymers such as carbopol 934, 940, chitosan, and sodium carboxymethylcellulose (SCMC). Wet granulation was used. The evaluation involved testing drug-excipient compatibility, precompression parameters such as percentage yield, bulk density and tapped density of the granules, Carr’s index, Hausner ratio, angle of repose, post compression parameters such as color, shape, physical dimensions, weight variation, hardness, friability, swelling index, assay, in vitro dissolution study and ex vivo mucoadhesion studies.

Results: Based on in vitro evaluation, C1 was selected as the best formulation and evaluated further for release kinetics, curve fitting analysis, absorption studies using liquid chromatography-mass spectrometry (LC-MS) technique and histopathological assessment in female Sprague–Dawley rats. C1 followed Higuchi model kinetics. Accelerated stability study was as per ICH guidelines by keeping C1 at 40?±?2?°C and 75?±?5% RH for six months.

Conclusions: C1 was selected as the best formulation due to better swelling index (65.93% at 24?h), prolonged release of 100.62% cumulative drug release (CDR) at 24?h, superior mucoadhesion force (35.93?×?102 dynes/cm2) and retention time (16?h). The study revealed that C1 remained stable for six months. C1 showed nil systemic absorption which is desirable and according to histopathological study, C1, exhibited minimal damage on the rat vaginal epithelium indicating safety.  相似文献   

17.
Objective: In this study, we investigated the potential of thiolated chitosan-based mucoadhesive film, loaded with risedronate sodium in the treatment of osteoporosis.

Significance: Risedronate sodium is a bisphosphonate derivative having very low bioavailability when administered through the oral route. Moreover, the adverse effects associated with the drug when administered through GIT necessitate an alternative and feasible route which can improve its bioavailability and therapeutic efficacy.

Methods: Thiolation of chitosan was interpreted by different analytical techniques. The mucoadhesive films were prepared by the solvent evaporation method and evaluated for drug content analysis, swelling degree, mucoadhesive parameters, and permeation characterization. For the screening of preclinical efficacy and pharmacodynamic parameters, a methylprednisolone induced osteoporotic rat model was used. The trabecular microarchitecture and biochemical markers were evaluated for determination of bone resorption.

Results: The different analytical characterization of synthesized thiolated chitosan revealed that chitosan was successfully incorporated with thiol groups. The formulation containing 2:1 ratio of thiolated chitosan and HPMC-4KM was found to have the maximum swelling degree, mucoadhesive strength with a good force of adhesion and better in vitro permeability compared to the marketed formulation. With respect to trabecular microarchitecture, the drug-loaded film formulation showed superior and promising results. Furthermore, the film formulation also improved the serum level of biomarkers better than the marketed formulation.

Conclusions: The results significantly suggest that risedronate loaded novel mucoadhesive film formulation could be a logical approach in the therapeutic intervention of osteoporosis.  相似文献   


18.
Solid polymer electrolyte membrane comprising poly(vinyl chloride) (PVC), poly(ehylene oxide) (PEO) and different lithium salts (LiClO4, LiBF4 and LiCF3SO3) were prepared by the solution casting technique. The effect of complexing salt on the ionic conductivity of the PVC/PEO host polymer is discussed. Solid polymer electrolyte films were characterized by X-ray diffraction, FTIR spectroscopy, TG/DTA and ac impedance spectroscopic studies. The conductivity studies of these solid polymer electrolyte (SPE) films are carried out as a function of frequency at various temperatures ranging from 302 K to 353 K. The maximum room temperature ionic conductivity is found to be 0·079 × 10?4 S cm?1 for the film containing LiBF4 as the complexing salt. The temperature dependence of the conductivity of polymer electrolyte films seems to obey the Vogel-Tamman-Fulcher (VTF) relation.  相似文献   

19.
Objective: To develop mucoadhesive tablets for the vaginal delivery of progesterone (P4) to overcome its low oral bioavailability resulting from drug hydrophobicity and extensive hepatic metabolism.

Methods: The tablets were prepared using mixtures of P4/Pluronic® F-127 solid dispersion and different mucoadhesive polymers. The tablets physical properties, swelling index, mucoadhesion and drug release kinetics were evaluated. P4 pharmacokinetic and pharmacodynamic properties were evaluated in female rabbits and compared with vaginal micronized P4 tablets and intramuscular (IM) P4 injection, respectively.

Results: The tablets had satisfactory physical properties and their swelling, in vitro mucoadhesion force and ex vivo mucoadhesion time were dependent on tablet composition. Highest swelling index and mucoadhesion time were detected for tablets containing 20% chitosan-10% alginate mixture. Most tablets exhibited burst release (~25%) during the first 2?h but sustained the drug release for ~48?h. In vivo study showed that chitosan-alginate mucoadhesive tablets had ~2-fold higher P4 mean residence time (MRT) in the blood and 5-fold higher bioavailability compared with oral P4. Further, same tablets showed 2-fold higher myometrium thickness in rabbit uterus compared with IM P4 injection.

Conclusion: These results confirm the potential of these mucoadhesive vaginal tablets to enhance P4 efficacy and avoid the side effects associated with IM injection.  相似文献   

20.
ABSTRACT

The bioavailability and onset of action of drugs with high first-pass metabolism can be significantly improved by administration via the sublingual route. The objective of this study was to evaluate the effect of polymer type and tablet compaction parameters on the adhesive properties and drug release profile from mucoadhesive sublingual tablet formulations. Pentoxifylline was selected as the model drug because it has poor oral bioavailability due to extensive first-pass metabolism. Two polymers known to possess mucoadhesive properties, carbomer and hydroxypropyl methyl cellulose (HPMC), were used to prepare the formulations. Tablets were prepared by using direct compression technique and evaluated for in vitro dissolution, drug-excipient interactions, and adhesive properties. In general, there was a decrease in the rate of drug release with an increase in the concentration of polymers. No drug-excipient interactions were evident from differential scanning calorimetry or high-performance liquid chromatography analysis. For the formulations containing HPMC, the force of mucoadhesion increased with an increase in the concentration of polymer; however, for carbomer formulations, no such correlation was observed. Force of mucoadhesion decreased as a function of hydration time in both of the polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号