首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The objective of this study was to investigate the use of water soluble cellulose acetate (WSCA) as a film coating material for tablets. Aspirin (ASA) tablets were prepared by direct compression and coated with either WSCA or HPMC (hydroxypropyl methylcellulose) dispersions. Coatings of 1-3%, depending on the intended application, were applied to the model drug (ASA) tablets employing a side-vented coating pan. Free films of WSCA, prepared by cast method, are crystal clear and, depending on the viscosity grade, are flexible, strong and durable. WSCA has the capability of forming free films without plasticizers and the films dry at room temperature. Glass transition temperature, Tg, was determined by differential scanning calorimetry. The Tg of WSCA is significantly higher relative to HPMC. Inclusion of plasticizer lowers the Tg of WSCA and effective plasticizers were PEG 400 and glycerin. Low viscosity WSCA was more soluble in water (25-30%) relative to medium viscosity WSCA (10-15%). WSCA solutions exhibited no increase in viscosity with an increase in temperature. Samples of coated (WSCA and HPMC) tablets and uncoated ASA cores were packaged for stability studies at room and elevated temperature storage. Physical stability of ASA tablets coated with 2:1 LV: MV (low viscosity: medium viscosity) WSCA formulations was better when compared to tablets coated with HPMC. Dissolution stability of WSCA coated ASA was similar to the physical stability results. After three months at elevated temperature (35 and 45°C), the WSCA coated tablets complied with USP dissolution requirements for ASA, while the HPMC coated tablets did not. There was no difference in moisture (weight) gain of ASA tablets coated with either WSCA or HPMC. The WSCA coated tablets were not sticky or tacky, while the HPMC coated tablets were tacky and stuck together.  相似文献   

2.
An oral controlled release formulation matrix for highly water‐soluble drugs was designed and developed to achieve a 24‐hour release profile. Using ranitidine HCl as a model drug, sodium alginate formulation matrices containing xanthan gum or zinc acetate or both were investigated. The caplets for these formulations were prepared by direct compression and the in vitro release tests were carried out in simulated intestinal fluid (SIF, pH7.5) and simulated gastric fluid (SGF, pH1.2). The release of the drug in the sodium alginate formulation containing only xanthan gum completed within 12 hours in the SIF, while the drug release in the sodium alginate formulation containing only zinc acetate finished almost within 2 hours in the same medium. Only the sodium alginate formulation containing both xanthan gum and zinc acetate achieved a 24‐hour release profile, either in the SIF or in the pH change medium. In the latter case, the caplet released in the SGF for 2 hours was immediately transferred into the SIF to continue the release test. The results showed that the presence of both xanthan gum and zinc acetate in sodium alginate matrix played a key role in controlling the drug release for 24 hours. The helical structure and high viscosity of xanthan gum might prevent zinc ions from diffusing out of the ranitidine HCl–sodium alginate–xanthan gum–zinc acetate matrix so that zinc ions could react with sodium alginate to form zinc alginate precipitate with a cross‐linking structure. The cross‐linking structure might control a highly water‐soluble drug to release for 24 hours. Evaluation of the release data showed the release mechanism for the novel formulation might be attributed to the diffusion of the drug.  相似文献   

3.
Flax Acrodur biocomposites are elaborated with an innovative flax reinforcement consisting of long technical fibers unidirectionally arranged without any weft and twist. The fibers cohesion is performed by using a new process consisting by reactivating the pectin cement. A polyester thermoset matrix (Acrodur) is used to impregnate the flax reinforcement and to produce unidirectional (UD) laminates. The relationship between the main process variables (drying, fibers content, densification and curing parameters) and the properties of the biocomposites is investigated. The optimized biocomposites have an elastic modulus of 18 ± 1 GPa with 55% wt.% flax fiber content and a low density of 0.93 g/cm3. The thermal stability of the developed biocomposites is also investigated by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and Dynamic Mechanical Analysis (DMA). DMA results show a slight change of the storage modulus in a range of temperature from 23 °C to 160 °C. The appropriate processing parameters for the biocomposites are established. The developed flax tapes reinforced Acrodur biocomposites have a potential to be integrated for automotive applications thanks to their high stiffness/weight ratio and environmental advantages.  相似文献   

4.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号