首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a stationary shoulder friction stir process (SSFSP) to produce a smooth surface finish. The use of a stationary shoulder tool contributes to reducing the heat input during friction stir processing (FSP). Hence, a stationary shoulder tool is advantageous for FSP in heat sensitive alloys like magnesium. The present short communication investigates the surface finish of AZ31B magnesium alloy processed by SSFSP without using additional cooling. Surface analysis of the processed region was carried out by 2D and 3D surface mapping using digital microscopy. The surface mapping indicated that there was very little flash generation on the processed zone, while 3D mapping quantified the surface roughness in the longitudinal as well as transverse directions of the processing zone.  相似文献   

2.
镁合金搅拌摩擦焊接工艺参数优化   总被引:1,自引:0,他引:1  
为了优化镁合金搅拌摩擦焊接工艺参数,对5 mm厚镁合金AZ31B板材的搅拌摩擦焊接技术进行了试验研究,利用SN比实验设计,对镁合金AZ31B搅拌摩擦焊接工艺参数进行了方差分析,优化了搅拌头的材料、结构,最终确定搅拌头的材料为W6Mo5Cr4V2,结构为凹面圆台形.轴肩尺寸为12 mm.探针的根部直径为5.5 mm,端部直径为2.5 mm,长度为4.7 mm.获得镁合金AZ31B搅拌摩擦焊的工艺参数显著性顺序为旋转速度、横向速度和压力;确定了镁合金AZ31B搅拌摩擦焊的最优工艺参数为1500 r/min、47.5 mm/min、3kN.  相似文献   

3.
The fatigue crack growth properties of friction stir welded joints of 2024‐T3 aluminium alloy have been studied under constant load amplitude (increasing‐ΔK), with special emphasis on the residual stress (inverse weight function) effects on longitudinal and transverse crack growth rate predictions (Glinka's method). In general, welded joints were more resistant to longitudinally growing fatigue cracks than the parent material at threshold ΔK values, when beneficial thermal residual stresses decelerated crack growth rate, while the opposite behaviour was observed next to KC instability, basically due to monotonic fracture modes intercepting fatigue crack growth in weld microstructures. As a result, fatigue crack growth rate (FCGR) predictions were conservative at lower propagation rates and non‐conservative for faster cracks. Regarding transverse cracks, intense compressive residual stresses rendered welded plates more fatigue resistant than neat parent plate. However, once the crack tip entered the more brittle weld region substantial acceleration of FCGR occurred due to operative monotonic tensile modes of fracture, leading to non‐conservative crack growth rate predictions next to KC instability. At threshold ΔK values non‐conservative predictions values resulted from residual stress relaxation. Improvements on predicted FCGR values were strongly dependent on how the progressive plastic relaxation of the residual stress field was considered.  相似文献   

4.
Friction stir processing (FSP) was applied to A356-T6 cast aluminum alloy to modify the microstructure and to eliminate casting defects under two different tool rotational speeds. Plane bending fatigue tests had been conducted, revealing that FSP could enhance the fatigue strength where the lower rotational speed condition gave better results. The enhancement of fatigue strength was attributed to the elimination of casting defects. Crystallographic analysis by EBSD revealed that the texture induced by FSP had detrimental effect on growth resistance. The lower rotational speed condition resulted in the weaker texture, and consequently, further increase of fatigue strength was achieved compared with the higher rotational speed condition.  相似文献   

5.
Cast aluminum alloy, AC4CH-T6, and wrought aluminum alloy, A6061-T6, were joined by means of friction stir welding (FSW) technique. The effect of microstructure and post heat treatment on fatigue behavior of the dissimilar joints was investigated. Near the weld centre, Vickers hardness was lower than in the parent metals and the hardness minima were observed along the trace route of FSW tool’s shoulder edge. Tensile fracture took place on A6061 side where the hardness was minimal, resulting in the lower static strength of the dissimilar joints than AC4CH or A6061. Fatigue fracture occurred on AC4CH side due to casting defects and the fatigue strength of the dissimilar joints was similar to that of AC4CH, but lower than that of A6061. Friction stir process (FSP) and post heat treatment successfully improved the fatigue strength of the dissimilar joints up to that of the parent metal, A6061. __________ Translated from Problemy Prochnosti, No. 1, pp. 150–154, January–February, 2008.  相似文献   

6.
A semi-solid processed (thixomolded) Mg–9Al–1Zn magnesium alloy (AZ91D) was subjected to friction stir welding (FSW), aiming at evaluating the weldability and fatigue property of the FSW joint. Microstructure analysis showed that a recystallized fine-grained microstructure was generated in the nugget zone (NZ) after FSW. The yield strength, ultimate tensile strength, and elongation of the FSW joint were obtained to be 192 MPa, 245 MPa, and 7.6%, respectively. Low-cycle fatigue tests showed that the FSW joint had a fatigue life fairly close to that of the BM, which could be well described by the Basquin and Coffin-Manson equations. Unlike the extruded magnesium alloys, the hysteresis loops of FSW joint of the thixomolded AZ91D alloy were basically symmetrical, while the non-linear or pseudoelastic behavior was still present. The FSW joint was observed to fail in the BM section rather than in the NZ. Fatigue crack initiated basically from the pores at or near the specimen surface, and crack propagation was mainly characterized by fatigue striations along with the presence of secondary cracks.  相似文献   

7.
Simulation and experimental investigation of FSP of AZ91 magnesium alloy   总被引:1,自引:0,他引:1  
A thermo-mechanical simulation of the friction stir processing (FSP), using the DEFORM 3D software based on Lagrangian implicit, was developed and verified by the experimental results. Simulation can successfully predict the temperature and effective strain distributions. Material flow around the tool pin was examined using the point tracking. It was found that the major part of material flow occurs at the advancing side, and consequently, stirred zone (SZ) stretches toward the advancing side. However, material at the retreating side moves slightly in backward direction. The material deformation and the peak temperature influence on the microstructural characters and can determine the width of SZ. Based on the simulation, effective strain and temperature histories of material around the tool pin were also calculated. The amount of effective strain and peak temperature required for recrystallization at the advancing and retreating sides as well as at the bottom of SZ was determined. Therefore, the width of SZ can be predicted by the simulation.  相似文献   

8.
The room temperature fatigue properties of AZ91 magnesium alloy produced by high pressure die casting (HPDC) as cast, heat treated, friction stir processed (FSP) and FSP and heat treated were studied. The fatigue properties of the material were evaluated for the HPDC magnesium alloy in the as-received state and after a solution treatment at 415 °C for 2 h and an ageing treatment at 220 °C for 4 h. The heat treatment resulted in a significant increase in the fatigue properties of the HPDC material, while no significance influence of heat treatment was recorded in the FSP condition. The morphology of fracture surfaces was examined by employing a field emission gun scanning electron microscope (FEGSEM).  相似文献   

9.
The fatigue results of a high‐pressure die cast of AZ91D magnesium alloy revealed the presence of different types of casting defects, which account for the large scattering in the number of cycles until failure. In this paper, this magnesium alloy has been analysed, and in an effort to reproduce the same surface and material conditions exhibited in automotive service components, the fatigue test samples were manufactured using a die that employs the same casting process and equipment. To examine the fracture surface of all the fatigue tests, a scanning electron microscope was used, and the source of the failure, so as to relate fatigue life with casting defect type, was identified. Five casting defect types that influence the fatigue behaviour were observed and classified: (a) isolated pores (blowholes), (b) micro‐porosity areas, (c) circular shrinkage cavities associated with the contraction and geometry of the casted specimen, (d) surface burrs associated with the die‐casting mould and (e) the presence of oxides or inclusions.  相似文献   

10.
Hypereutectic Al-30 wt.% Si alloy was subjected to friction stir processing (FSP) to modify the cast microstructure. FSP reduces the size of undesirable coarse silicon particles, eliminates porosities, and homogenizes and refines the cast microstructure. This paper demonstrates the effect of two pass overlap friction stir processing on microstructural refinement of Al–30Si alloy, which delineates significant reduction in size and aspect ratio of silicon particles from average 200 to 2 µm and 4.93 to 1.75 µm respectively. The stir zone of two pass overlap FSP exhibits relatively homogeneous Si particle distribution. Increase in frequency of silicon particles less than 1 µm was also observed in two pass FSP stir zones. Hardness in stir zones was measured to be 75 Hv after first pass and the same changed to 85 Hv respectively after second pass. Further uniform microhardness was observed in the FSP stir zone which was not the case in as-cast Al–30Si microstructure.  相似文献   

11.
Rotary bending fatigue tests were conducted in laboratory air and distilled water using three extruded magnesium (Mg) alloys AZ80, AZ61, and AM60 with different chemical compositions. In laboratory air, the fatigue strengths at high stress levels were similar in all alloys because cracks initiated at Al-Mg intermetallic compounds, whereas AZ80 with the largest Al content exhibited the highest fatigue strength at low stress levels, which was attributed to the crack initiation due to cyclic slip deformation in the matrix microstructure. In distilled water, fatigue strengths were considerably decreased due to the formation of corrosion pits in all alloys, and the difference of fatigue strength at low stress levels among the alloys disappeared, indicating that the addition of Al that improved the fatigue strength in laboratory air was detrimental to corrosion fatigue. __________ Translated from Problemy Prochnosti, No. 1, pp. 141–145, January–February, 2008.  相似文献   

12.
This paper presents the results of experimental investigation on fatigue behaviors of friction stir welded joints in AA7075-T6 with ultrasonic fatigue test system (20 kHz). Two kinds of particles, Fe-rich intermetallic compounds and Mg2Si-based particles, governed the fatigue crack initiation. The plastic deformation and recrystallization during welding process led to the changes in particle size and micro crack occurrence between thermo-mechanically affected zone (TMAZ) and nugget zone (NZ). Therefore, the fatigue crack initiation sites leaned to be located at the TMAZ in short fatigue life, or at the NZ in very high cycle fatigue regime.  相似文献   

13.
The present paper aims to investigate the effect of ultrasonic peening treatment on the very high cycle fatigue resistance of an AA7075 friction stir welded joint. Microscopy observation, microhardness and X‐ray diffraction measurements were carried out to characterize the treated surface of peened specimens. Fatigue crack initiation sites were investigated through scanning electron microscope, and the role of enhanced surface on fatigue resistance was analyzed. The results indicate that a sensible fatigue strength improvement can be obtained through application of ultrasonic peening treatment and that fatigue cracks can initiate from the interior of the specimen. To clarify the fatigue failure mechanism, we analyzed the microstructure characteristics, compressive residual stress profile and intermetallic inclusion distribution in the surface layers, and we discussed the capability of ultrasonic peening treatment to hinder the surface crack initiation.  相似文献   

14.
15.
为改善再生铝中富铁相形态,提高其合金性能,本文采用搅拌摩擦加工对Al-Si-Fe合金进行了研究。利用金相显微镜、扫描电镜、万能拉伸试验机、显微硬度计及图形分析仪等研究了加工速度对Al-Si-Fe合金组织和性能的影响。研究结果表明:搅拌摩擦加工后,第二相形态由针状、棒状向细小且均匀分布的球状、粒状和短棒状转变,前进侧热机械影响区组织得到一定程度的细化且具有明显的取向,而返回侧热机械影响区的组织则保持铸态形貌特征的组成。加工中心区的富铁相和共晶硅平均长度较基材分别降低了86.5%、37.4%,而圆整度则分别提高了7.8倍和2.1倍以上,富铁相细化效果优于共晶硅;随着加工速度的提高,富铁相的平均长度逐渐增大,而圆整度则逐渐降低;但加工速度对共晶硅的平均长度影响较小,但圆整度逐渐降低。加工区的抗拉强度、屈服强度大幅降低,最高降幅达55.4%,而伸长率最大可提高6.8倍。随着加工速度的提高,其抗拉强度、屈服强度有所提高,伸长率则逐渐降低,最大降幅达到19.3%。搅拌摩擦加工后,Al-Si-Fe合金晶粒细化,材料性能提升。  相似文献   

16.
A6061 and low carbon steel sheets, whose thicknesses were 2 mm, were welded by a friction stir spot welding (FSSW) technique using a scroll grooved tool without probe (scroll tool). Tensile‐shear fatigue tests were performed using lap‐shear specimens at a stress ratio R = 0.1, and the fatigue behaviour of dissimilar welds was discussed. Tensile‐shear force of the dissimilar welds was higher than that of the A6061 similar ones. Furthermore, the dissimilar welds exhibited nearly the same fatigue strengths as the A6061 similar ones, indicating FSSW by a scroll tool was effective technique for joining aluminium to steel sheet. Fatigue fracture modes of the dissimilar welds were dependent on load levels, where shear fracture through the interface between A6061 and steel occurred at high load levels, while crack grew through A6061 sheet at low load level.  相似文献   

17.
Mechanical properties and microstructure of friction stir-welded AZ31 based on variety post-weld heat treatment (PWHT) temperatures were evaluated, and an optimal PWHT condition was identified. At rotational speed of 1200?rev?min?1 and welding speed of 300?mm?min?1, the average yield tensile, tensile strength and elongation of friction stir-welded joints was 92.5?MPa, 199.1?MPa and 7.3%, respectively. It was found that (300°C – 1?h) heat treatment after welding was more beneficial than other heat treatments in enhancing the mechanical properties and homogenising grain size. The maximum yield and tensile strength was 139.9 and 238.4?MPa, respectively, tensile longitudinal and compressive transverse residual stress could be effectively eliminated, and the fatigue strength increased 34.2% comparing with as-welded joints.  相似文献   

18.
The aim of this paper is to assess the very-high-cycle fatigue (VHCF) behaviour of a magnesium alloy (ZK60). Results indicate that the fatigue crack initiates from an area consisting of many distributed facets, while the region of early crack propagation is characterised by parallel traces, based on a fractographic analysis. The significant differences in morphology around the crack initiation area result from the interaction between the deformation twinning and the plastic zone at the crack tip. In addition, the fatigue crack propagation rate around the crack initiation site is also estimated based on a modified Murakami model. It is found that the formation stage for the fatigue crack is of great importance to the fatigue failure mechanism in the VHCF regime.  相似文献   

19.
Rotating bending fatigue tests have been performed using Diamond‐like carbon (DLC) coated specimens of a wrought magnesium alloy, AZ80A, in laboratory air and demineralised water and the effect of DLC coating on fatigue and corrosion fatigue behaviour was studied. Three film thicknesses of 3.5 μm, 13 μm, and 25 μm (two‐layer film) were evaluated and particular attention was paid to the role of thick DLC coating. In laboratory air, the fatigue strengths of the DLC‐coated specimens were higher than that of the substrate specimen and increased with increasing film thickness. This was because hard DLC coating with good adhesion suppressed the crack initiation due to cracking of inclusions or cyclic slip deformation on the substrate surface. In demineralised water, the fatigue strength of the 3.5‐μm DLC‐coated specimen was the same as that of the substrate specimen due to the penetration of the water through pre‐existing film defects, while the 13‐μm and 25‐μm DLC‐coated specimens showed increased corrosion fatigue strength with increasing film thickness and also exhibited nearly the same fatigue strength as in laboratory air except for a few premature failed specimens, indicating a potential of thick DLC coating or two‐layer coating for complete improvement of corrosion fatigue strength in aqueous environments.  相似文献   

20.
This paper presents the electrochemical performance and microstructural evolution of friction stir welded joint of dissimilar AA1050 and AZ91D in seawater, for potential applications in the transportation industry. The corrosion behavior of the dissimilar weld was compared to the corrosion behavior of the parent materials, and similar welds of each alloy. The experiments were successfully conducted with an H13 hot-working tool steel in butt-joint configuration. The results revealed the presence of intercalated microstructure in the dissimilar weld and homogenous microstructures in the similar welds. The corrosion resistance properties of the parent materials and similar welds were higher than that of the dissimilar weld sample. The dissimilar weld has a current density of 3.83×10−5 A/cm2 and corrosion rate of 9.99×10−4 mm/year; and is most susceptible to corrosion, due to the galvanic coupling between the dissimilar alloys and intermetallic compounds. The similar weld of AA1050 has a current density of 1.99×10−7 A/cm2 and corrosion rate of 1.44×10−3 mm/year, while the similar weld of AZ91D has a current density of 8.58×10−6 A/cm2 and corrosion rate of 1.13×10−1 mm/year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号