共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
对互联网用户人数的科学预测可为网络的建设和管理提供决策依据。在传统灰色预测模型的基础上,结合新信息优先的思想,建立了等维新息灰色预测模型,并利用马尔可夫链模型预测出结果的波动范围,形成等维新息灰色马尔可夫预测模型。再以2007年12月-2012年06月我国互联网上网人数实测值为原始数据,构建预测模型,预测2012年12-2014年06月的互联网上网人数。实例结果表明,等维新息灰色马尔可夫预测模型其预测结果的误差更小,精度更高,还能提供预测结果的波动范围及出现概率。 相似文献
3.
基于灰色-马尔可夫模型的粮食产量预测 总被引:4,自引:0,他引:4
文中首先用1976年到1995年的桐城县冬小麦单产,建立灰色GM(1,1)模型,再用随机过程理论的马尔可夫模型获得GM(1,1)模型在已知年份里的偏差规律(即偏差的转移概率矩阵),并且依照此规律对GM(1,1)模型结果进行修正,将由GM(1,1)模型预测的一个具体数值,修正成为区间和概率组成的预测范围,增加预测的可靠性。最后用灰色-马尔可夫模型外推预测1996年到2000年共5年的小麦单产。实验说明灰色-马尔可夫模型大大提高了预测精度,将预测结果表示为预测范围,更为准确地反映出粮食产量的走势。 相似文献
4.
城市燃气短期负荷预测的神经网络等维新息模型 总被引:3,自引:0,他引:3
应用人工神经网络理论和灰色预测理论中的等维息建模思想,建立了既反映其时间序列的周期性增长趋势,又包括天气、气温等非线性影响因素在内的短期负荷预测的BP神经网络等维新息模型。通过改进BP神经网络,对哈尔滨市燃气管网系统的小时燃气用量进行了预测,所建立的东仅有较高的收敛速度和精度,同时也具有较强的适应性和灵活性,可应用于工程实践。 相似文献
5.
灰色系统理论将随机过程看成为灰色过程,利用数据表面离乱但整体有序的特点,挖掘潜在本质规律。对运动物体进行光学跟踪及轨迹预测,在飞行器导航、机器人路径规划等方面一直是个研究热点。根据灰色系统理论的思想,提出一种基于灰色等维新息模型的目标位置跟踪预测方法,对其进行具体分析并应用于一目标光学跟踪实验系统并验证了其有效性,最后建议指出了改进此算法的两个新的研究点。 相似文献
6.
文中首先用1976年到1995年的桐城县冬小麦单产,建立灰色GM(1,1)模型,再用随机过程理论的马尔可夫模型获得GM(1,1)模型在已知年份里的偏差规律(即偏差的转移概率矩阵),并且依照此规律对GM(1,1)模型结果进行修正,将由GM(1,1)模型预测的一个具体数值,修正成为区间和概率组成的预测范围,增加预测的可靠性。最后用灰色-马尔可夫模型外推预测1996年到2000年共5年的小麦单产。实验说明灰色-马尔可夫模型大大提高了预测精度,将预测结果表示为预测范围,更为准确地反映出粮食产量的走势。 相似文献
7.
基于等维新息模型的矿井瓦斯涌出量预测 总被引:1,自引:0,他引:1
矿井瓦斯涌出量预测是瓦斯防治的重要技术环节,能够为煤矿安全生产提供保障.为了提高矿井瓦斯涌出量的预测精度,将等维新息模型的理论结合到灰色线性回归组合模型中,建立等维新息灰色线性回归组合模型,并应用MATLAB软件进行编程.以某煤矿相对瓦斯涌出量统计数据为实例,利用等维新息灰色线性回归组合模型对其瓦斯涌出量进行预测,分析了模型的最佳维数,通过检验得出模型的精度等级为一级.结果表明:等维新息灰色线性回归组合模型在对矿井深部瓦斯涌出量进行预测时,精度高于原有的灰色预测模型,取得了良好的预测效果.可将此模型的软件应用到瓦斯监控系统中,以提高系统的技术性与实用性. 相似文献
8.
交通事故预测是交通安全评价、规划和决策的基础。在传统灰色预测模型和马尔可夫链理论的基础上,利用新信息优先的思想,建立了等维新息无偏灰色马尔可夫预测模型。该模型通过结合灰色预测与马尔可夫链理论的特点,用无偏灰色预测模型拟合系统的发展变化趋势,并以此为基础进行马尔可夫预测,在每一步预测中不断推陈出新,更新原始数据。以2001年—2010年全国道路交通事故死亡人数实测值作为原始数据,构建预测模型,预测其2011年—2015年事故死亡人数。结果表明:等维新息无偏灰色马尔可夫预测模型的误差更小,精度更高,尤其适合中长期预测。 相似文献
9.
针对自动测试系统ATS中测试仪器校准周期的确定问题,提出了改进的灰色GM(1,1)模型预测方法。首先从GM(1,1)模型出发对模型本身进行改进,然后建立等维新息模型,并确定其最佳维数,递补动态更新预测信息,为进一步提高预测精度,提出了残差修正预测模型,并引入马尔可夫过程解决其修正残差的符号问题。实例结果表明,改进的模型预测方法比单独的模型预测具有更高的精度,可以应用于测试仪器校准周期的预测过程。 相似文献
10.
灰色预测控制已在过程控制中得到了广泛应用,控制器的核心模型是GM(1,1)模型,该模型是有偏差的指数模型.作者导出了GM(1,1)模型的偏差公式,并在此基础上提出了无偏GM(1,1)模型.本文介绍无偏GM(1,1)模型,并用实例显示了无偏GM(1,1)模型的优越性. 相似文献
11.
为了准确掌握矿山的沉降变化规律,预测沉降发展趋势,提出一种采用灰色模型进行矿区沉降预测的方法。结合沉降观测实例,采用灰色模型精度检验和数理统计的F分布两种方法对灰色模型的预测结果进行检验和分析。结果表明,灰色模型能够满足矿区沉降预测的精度要求,且预测精度随着采用数据量的增加而提高。 相似文献
12.
13.
14.
15.
建筑物沉降监测数据序列受观测条件影响大多呈现出数据量少、光滑性差、含噪声和非等时距等特点。在小波除噪和等间隔灰色GM(1,1)模型的基础上建立了非等间隔G(1,1)预测模型。在建模数据中,早期观测数据对模型预测精度贡献小(甚至有拖累现象),近期观测数据对模型预测精度贡献较大,故在建模时引入了权重矩阵以此提高模型的预测精度。实证分析表明所建非等间隔加权灰色GM(1,1)模型具有较高的预测精度,可用以工程实践。 相似文献
16.
根据神经网络能有效修正灰色预测模型的思路,本文提出了基于灰色系统及径向基神经网络的组合预测模型。通过采集园区节点交换机的流量数据,在分析网络流量时间序列特性的基础上建立灰色GM(1,1)模型,并采用径向基神经网络对预测模型残差进行修正。实验结果和仿真实验表明,组合模型效果及预测精度远优于单一灰色预测模型。 相似文献
17.
针对基于Kalman滤波的跟踪方法需要对噪声特性和轨迹的运动规律进行假设的不足,将新陈代谢一个变量的一阶灰色模型(GM(1,1))引入动态轨迹预测方法,提出一种基于加权灰色GM(1,1)模型的动态轨迹预测算法(TR_GM_PR算法)。首先,顺序截取预测点前不同长度的子轨迹,计算采用灰色GM(1,1)模型拟合各子轨迹的相对误差及相应的预测值;其次,对各子轨迹的相对拟合误差进行归一化处理,根据处理后的结果设置各子轨迹预测值权重;最后,将各子轨迹获得的预测值与其对应权重的线性组合作为轨迹未来运行趋势的最终预测结果。采用2000-2008年美国大西洋飓风数据进行实验,TR_GM_PR算法6 h的预测正确率为67.6056%,比基于模式匹配的飓风预测方法提高2.6056个百分点。实验结果表明, TR_GM_PR算法适用于轨迹短期预测。此外,该预测算法计算简单、实时性高,能够有效提高动态轨迹的预测正确率。 相似文献
18.
针对灰色模型在预测变压器故障时对波动数据序列的预测误差较大的问题,提出了一种灰色GM(1,m)预测模型改进方案:对原始数据序列进行处理,使其具有更好的指数规律,以满足预测模型对光滑性的要求;对处理过的原始数据序列进行灰关联度分析,以得到各变量之间的关系;优化预测模型的背景值并用其建模;采用等维新息模型预测数据。采用改进的灰色GM(1,m)模型预测某变压器油中7种特征气体的体积分数,所得预测数据的平均残差和后验相对误差均小于GM(1,1)模型和传统GM(1,m)的预测结果,表明其具有更好的预测精确度。 相似文献