首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to effectively enhance the efficiency of dephosphorization, the distribution ratios of phosphorus between CaO-FeO-SiO2-Al2O3/Na2O/TiO2 slags and carbon-saturated iron (\( L_{\text{P}}^{\text{Fe-C}} \)) were examined through laboratory experiments in this study, along with the effects of different influencing factors such as the temperature and concentrations of the various slag components. Thermodynamic simulations showed that, with the addition of Na2O and Al2O3, the liquid areas of the CaO-FeO-SiO2 slag are enlarged significantly, with Al2O3 and Na2O acting as fluxes when added to the slag in the appropriate concentrations. The experimental data suggested that \( L_{\text{P}}^{\text{Fe-C}} \) increases with an increase in the binary basicity of the slag, with the basicity having a greater effect than the temperature and FeO content; \( L_{\text{P}}^{\text{Fe-C}} \) increases with an increase in the Na2O content and decrease in the Al2O3 content. In contrast to the case for the dephosphorization of molten steel, for the hot-metal dephosphorization process investigated in this study, the FeO content of the slag had a smaller effect on \( L_{\text{P}}^{\text{Fe-C}} \) than did the other factors such as the temperature and slag basicity. Based on the experimental data, by using regression analysis, \( \log L_{\text{P}}^{\text{Fe-C}} \) could be expressed as a function of the temperature and the slag component concentrations as follows:
$$ \begin{aligned} \log L_{\text{P}}^{\text{Fe-C}} & = 0.059({\text{pct}}\;{\text{CaO}}) + 1.583\log ({\text{TFe}}) - 0.052\left( {{\text{pct}}\;{\text{SiO}}_{2} } \right) - 0.014\left( {{\text{pct}}\;{\text{Al}}_{2} {\text{O}}_{3} } \right) \\ \, & \quad + 0.142\left( {{\text{pct}}\;{\text{Na}}_{2} {\text{O}}} \right) - 0.003\left( {{\text{pct}}\;{\text{TiO}}_{2} } \right) + 0.049\left( {{\text{pct}}\;{\text{P}}_{2} {\text{O}}_{5} } \right) + \frac{13{,}527}{T} - 9.87. \\ \end{aligned} $$
  相似文献   

2.
The kinetics of Ni3S2 sulfide (heazlewoodite) dissolution in solutions of hydrochloric and sulfuric acids is studied. The process under study in the temperature range of 30–90°C is found to occur in a kinetic regime and is controlled by the corresponding chemical reactions of the Ni3S2 decomposition by solutions of inorganic acids (E a = 67–92 kJ/mol, or 16–22 kcal/mol). The only exception is the Ni3S2-HCl system at elevated temperatures (60–90°C). In this case, the apparent activation energy decreases sharply to 8.8 kJ/mol (2.1 kcal/mol), which is explained by the catalytic effect of gaseous chlorine formed under these conditions. The studies performed are related to the physicochemical substantiation of the hydrometallurgical processing of the copper-nickel converter mattes produced in the industrial cycle of the Norilsk Mining Company.  相似文献   

3.
4.
Aiming at devising new mold flux for Ce-bearing stainless steel, a fundamental investigation on the effect of Ce2O3 on properties of the CaO-Al2O3-Li2O-Ce2O3 slag was provided by the present work. The results show that adding Ce2O3 could decrease the viscosity of the slag due to its effects on decreasing the polymerization of the slag. The crystalline process was restrained by increasing the content of Ce2O3, and the crystalline phases also can be influenced by the slag structure. The crystalline phases were transferred from LiAlO2 and CaO to LiAlO2 and CaCeAlO4 with the addition of Ce2O3 to the slag, which could be well confirmed by the structure of the unit cell of the crystals.  相似文献   

5.
To investigate the carbothermic reduction behaviors of xFeTiO3·(1 ? x)Fe2O3 solid solutions, the solid solutions with different x values were synthesized and used in the corresponding reactions. With an increase in x, the temperature pertaining to the onset of carbothermic reduction increased, while the rate of reduction of the solid solutions, α, decreased. The lattice parameters calculated from XRD patterns indicated that the solid solution with a higher x led to a larger lattice distortion. The non-isothermal kinetics were calculated, and an average activation energy E value of 3.0 × 102 kJ/mol was obtained.  相似文献   

6.
7.
The electrical conductivity of NaF-AlF3-Al2O3 melts with a CaF2 concentration of 5 wt % is measured at a continuously varying cell constant when the molar cryolitic ratio CR = [NaF]/[AlF3] changes from 1.2 to 2.0 [1, 2]. The experimental data are used to obtain a regression equation to describe the dependence of the electrical conductivity of the melts under study on CR, the alumina content, and temperature {χ] = f(CR, [Al2O3], T)}.  相似文献   

8.
Undoped and Zn-doped Sn2S3 thin films were fabricated by spray pyrolysis technique on glass substrates kept at 400 °C. All the films exhibited orthorhombic crystal structure with a preferential orientation along the (2 1 1) plane. Nanoplate structures were observed from the SEM images and the presence of Zn in the doped films was confirmed from the EDX spectra. The average optical transmittance of all the films in the visible region was found to be nearly equal to 80 %. Film resistivity initially decreased from 3.27 × 10?1 to 0.78 × 10?1 Ω-cm for the Sn2S3 thin film doped with 1 wt% Zn concentration and for higher doping concentration it increased. The obtained results showed that the Sn2S3 thin film doped with 1 wt% Zn concentration had better physical properties which made them suitable for photovoltaic applications.  相似文献   

9.
The effect of Al2O3 concentration on the density and structure of CaO-SiO2-Al2O3 slag was investigated at multiple Al2O3 mole percentages and at a fixed CaO/SiO2 ratio of 1. The experiments were conducted in the temperature range of 2154 K to 2423 K (1881 °C to 2150 °C) using the aerodynamic levitation technique. In order to understand the relationship between density and structure, structural analysis of the silicate melts was carried out using Raman spectroscopy. The density of each slag sample investigated in this study decreased linearly with increasing temperature. When the Al2O3 content was less than 15 mole pct, density decreased with increasing Al2O3 content due to the coupling of Si (Al), whereas above 20 mole pct density of the slag increased due to the role of Al3+ ion as a network modifier.  相似文献   

10.
The glass series with general formula 15 Li2O–(85 − x) B2O3x La2O3 was prepared. Electrical and optical properties of these glasses were studied. It is observed that the conductivity of these glasses decreases while density, glass transition temperature and refractive index increases with the addition of La2O3. Ion concentration of La3+ in glasses, polaron radius, field strength, molar refractivity and molar electronic polarizability were calculated. The absorption coefficient and direct optical band gaps are evaluated using the absorption edge calculations. The different factors that play a role for controlling the refractive indices such as electronic polarizability, field strength of cations and rigidity of glass structure are discussed in accordance with the obtained index data.  相似文献   

11.
All available thermodynamic and phase-diagram data have been critically evaluated and optimized for the liquid-slag phase and for all solid phases at 1 bar pressure from 298 K to above the liquidus temperatures for the systems MnO-Al2O3 and MnO-Al2O3-SiO2, and a database of model parameters has been prepared. The modified quasichemical model was employed for the molten-slag phase. Calculations using the database were performed with applications to inclusion engineering for Mn/Si killed steel.  相似文献   

12.
Phase-equilibrium data and liquidus isotherms for the system “MnO”-CaO-(Al2O3+SiO2) at silicomanganese alloy saturation have been determined in the temperature range of 1373 to 1723 K. The results are presented in the form of the pseudoternary sections “MnO”-CaO-(Al2O3+SiO2) with Al2O3/SiO2 weight ratios of 0.55 and 0.65. The primary-phase fields have been identified in this range of conditions.  相似文献   

13.
NdFeB magnet scrap is an alternative source of neodymium that could have a significantly lower impact on the environment than current mining and extraction processes. Neodymium can be readily oxidized in the presence of oxygen, which makes it easy to recover neodymium in oxide form. Thermochemical data and phase diagrams for neodymium oxide containing systems is, however, very limited. Thermodynamic modeling of the B2O3-FeO-Fe2O3-Nd2O3 system was hence performed to obtain accurate phase diagrams and thermochemical properties of the system. Key phase diagram experiments were also carried out for the FeO-Nd2O3 system in saturation with iron to improve the accuracy of the present modeling. The modified quasichemical model was used to describe the Gibbs energy of the liquid oxide phase. The Gibbs energy functions of the liquid phase and the solids were optimized to reproduce all available and reliable phase diagram data, and thermochemical properties of the system. Finally the optimized database was applied to calculate conditions for selective oxidation of neodymium from NdFeB magnet waste.  相似文献   

14.
An ever increasing demand for high-performance ceramic coatings has made it inevitable for developing techniques with precise control over the process parameters to enable the fabrication of coatings with the desired microstructure and improved structural properties. The literature on plasma sprayed nanostructured ceramic coatings such as of Al2O3, Cr2O3, and their composites obtained using reconstituted nano sized ceramic powders has been reviewed in this study. Ceramic coatings due to their enhanced properties are on the verge of replacing conventional ceramic coatings used for various applications like automotive systems, boiler components, power generation equipment, chemical process equipment, aircraft engines, pulp and paper processing equipment, land-based and marine engine components, turbine blades etc. In such cases, the advantage is greater longevity and reliability for realizing the improved performance of ceramic coatings. It has been observed that the plasma sprayed nanostructured ceramic coatings show improvement in resistance to wear, erosion, corrosion, and mechanical properties as compared to their conventional counterparts. This article reviews various aspects concerning the plasma sprayed ceramic coatings such as (i) the present understanding of formation of plasma-spray coatings and factors affecting them, (ii) wear performance of nanostructured Al2O3, Cr2O3 and their composite ceramic coatings in comparison to their conventional counterparts, and (iii) mechanisms of wear observed for these coatings under various conditions of testing.  相似文献   

15.
Zinc ferrite and strontium hexaferrite; SrFe12O19/ZnFe2O4 (SrFe11.6Zn0.4O19) nanoparticles having super paramagnetic nature were synthesized by simultaneous co-precipitation of iron, zinc and strontium chloride salts using 5 M sodium hydroxide solution. The resulting precursors were heat treated (HT) at 850, 950 and 1150°C for 4 h in nitrogen atmosphere. The hysteresis loops showed an increase in saturation magnetization from 1.040 to 58.938 emu/g with increasing HT temperatures. The ‘as-synthesized’ particles have size in the range of 20–25 nm with spherical and needle shapes. Further, these spherical and needle shaped nanoparticles tend to change their morphology to hexagonal plate shape with increase in HT temperatures. The effect of such a systematic morphological transformation of nanoparticles on dielectric (complex permittivity and permeability) and microwave absorption properties were estimated in X band (8.2–12.2 GHz). The maximum reflection loss of the composite reaches −26.51 dB (more than 99% power attenuation) at 10.636 GHz which suits its application in RADAR absorbing materials.  相似文献   

16.
17.
The Cu solubility was measured in the CaO-B2O3 and BaO-B2O3 slag systems to understand the dissolution mechanism of Cu in the slags. The Cu solubility had a linear relationship with oxygen partial pressure in the CaO-B2O3 slag system, which corresponds with previous studies. Also, the Cu solubilities in slag decreased with increasing the slag basicity, which value of slope was close to –0.5 in logarithmic form. From the results of experiment, the Cu dissolution mechanism established as follows:
\textCu + \frac14\textO2 = \textCu + + \frac12\textO2 - {\text{Cu}} + \frac{1}{4}{\text{O}}_{2} = {\text{Cu}}^{ + } + \frac{1}{2}{\text{O}}^{2 - }  相似文献   

18.
19.
20.
Density measurements of a low-silica CaO-SiO2-Al2O3 system were carried out using the Archimedes principle. A Pt 30 pct Rh bob and wire arrangement was used for this purpose. The results obtained were in good agreement with those obtained from the model developed in the current group as well as with other results reported earlier. The density for the CaO-SiO2 and the CaO-Al2O3 binary slag systems also was estimated from the ternary values. The extrapolation of density values for high-silica systems also showed good agreement with previous works. An estimation for the density value of CaO was made from the current experimental data. The density decrease at high temperatures was interpreted based on the silicate structure. As the mole percent of SiO2 was below the 33 pct required for the orthosilicate composition, discrete \textSiO44 - {\text{SiO}}_{4}^{4 - } tetrahedral units in the silicate melt would exist along with O2– ions. The change in melt expansivity may be attributed to the ionic expansions in the order of
\textAl 3+ - \textO 2- < \textCa 2+ - \textO 2- < \textCa 2+ - \textO - {\text{Al}}^{ 3+ } - {\text{O}}^{ 2- } < {\text{Ca}}^{ 2+ } - {\text{O}}^{ 2- } < {\text{Ca}}^{ 2+ } - {\text{O}}^{ - }  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号