首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We fabricated a 1-GHz-spaced 16-channel arrayed-waveguide grating (AWG) by using a new AWG configuration where the path of each arrayed waveguide winds backward and forward across a 4-in diameter wafer without crossing any other waveguides. The ultra-narrow (< 1 GHz) and stable transmission bands of this AWG can be used to construct a wavelength reference standard covering the S, C, and L bands in the dense wavelength-division-multiplexing network systems whose frequency deviation is /spl plusmn/160 MHz.  相似文献   

2.
The crosstalk performance of an arrayed-waveguide grating (AWG) multiplexer or demultiplexer is primarily caused by random optical phase errors introduced in the arrayed waveguides. Because the layout of waveguides on a wafer is patterned via photomask through the photolithography process, the resolution of a photomask has a direct influence on the phase errors of an AWG. The paper presents a theoretical analysis on the phase error caused by photomask resolution and other basic design parameters. Both calculation and measurement results show that a high-resolution photomask (better than 25 nm) is a critical requirement to produce low-crosstalk (less than -30 dB) AWG demultiplexers. We also investigate the effect of nonideal power distribution in the arrayed waveguides because it contributes considerable phase errors when material impurity is not well controlled during wafer fabrication. Basic criteria of power profile truncation, number of grating waveguides, and material index variation are also summarized  相似文献   

3.
袁配  吴远大  王玥  安俊明  胡雄伟 《半导体光电》2016,37(3):313-317,326
设计并制作了基于绝缘体上硅(SOI)材料的1×16阵列波导光栅(AWG).该AWG器件的中心波长为1 550 nm,信道间隔为200 GHz,采用了脊型波导结构.首先确定了波导的结构尺寸以保证单模传输,并利用束传播法(BPM)模拟了波导间隔、弯曲半径和锥形波导长度等参数对器件性能的影响,对器件结构进行了优化,同时也利用BPM方法模拟了器件的传输谱.模拟结果显示:器件的最小信道损耗为4.64 dB,串扰小于-30 dB.根据优化的器件结构,通过光刻等半导体工艺制作了AWG,经测试得到AWG器件的损耗为4.52~8.1 dB,串扰为17~20 dB,能够实现良好的波分复用/解复用功能.  相似文献   

4.
We designed and fabricated arrayed-waveguide grating (AWG) modules with thermoelectric (TE) devices, and investigated their wavelength controllability and stability. The fabricated AWGs had 16 channels with a spacing of 0.8 nm in the 1.55 μm band. We confirmed that the center wavelength could be kept constant in a precise 0.02 mn range at ambient temperatures from -10 to 70°C and moreover could be tuned over a 0.35 nm range. We performed environmental tests with reference to the Bellcore requirements. These results confirmed both the stability of the AWG module under severe conditions and its mechanical strength  相似文献   

5.
We designed and fabricated arrayed-waveguide grating (AWG) modules with thermoelectric coolers/heaters. At these modules we measured the optical fiber-chip coupling loss and the optical reflections. Further we investigated the temperature stability of the center wavelengths. The fabricated AWGs had 8 and 16 channels, respectively, with a spacing of 0.8 nm (100 GHz) at 1540 nm center wavelength. The measurements show that the center wavelength could be kept constant within ±0.015 nm at ambient temperatures between 0 to 40 °C. The center wavelength could be tuned over 0.3 nm by temperature adjustment. We performed environmental tests that revealed a good mechanical stability of the AWG modules.  相似文献   

6.
We present a basic configuration of an unique integrated-optic arrayed-waveguide grating (AWG) multiplexer with loop-back optical paths and demonstrate an add-drop multiplexer (ADM), a network access terminal, and a wavelength channel selector for dense-WDM ring or bus networks, as three useful examples of its attractive applications. A key device in these components is a silica-glass based 1.55 μm polarization-insensitive 32×32 AWG multiplexer chip with 0.8 nm channel spacing which is fabricated using planar lightwave circuit (PLC) technologies. Fine operation in their new functional components is achieved by using the AWG multiplexer module having low insertion loss of 3.9 dB and low interchannel crosstalk of less than -28 dB  相似文献   

7.
A 25-channel 200 GHz arrayed waveguide grating (AWG) based on Si nanowire waveguides is designed, simulated and fabricated. Transfer function method is used in the simulation and error analysis of AWG with width fluctuations. The 25-channel 200 GHz AWG exhibits central channel insertion loss of 6.7 dB, crosstalk of ?13 dB, and central wavelength of 1 560.55 nm. The error analysis can explain the experimental results of 25-channel 200 GHz AWG well. By using deep ultraviolet lithography (DUV) and inductively coupled plasma etching (ICP) technologies, the devices are fabricated on silicon-on-insulator (SOI) substrate. This work has been supported by the National Key Research and Development Program of China (No.2016YFB0402504), and the National Natural Science Foundation of China (Nos.61435013 and 61405188). E-mail:zhangjiashun@semi.ac.cn   相似文献   

8.
Athermal all-polymer arrayed-waveguide grating multiplexer   总被引:6,自引:0,他引:6  
An athermal arrayed-waveguide grating (AWG) multiplexer relying on an all-polymer approach is reported. The all-polymer AWG consisting of polymer waveguides fabricated on a polymer substrate exhibits excellent performance. By properly adjusting the coefficient of thermal expansion of the polymer substrate, athermal and polarisation-independent AWG devices featuring a wavelength shift of less than ±0.05 nm in the 25-65°C temperature range could be demonstrated  相似文献   

9.
A compact, low-loss arrayed waveguide grating (AWG) module was achieved by adopting a novel optical spot-size converter (SSC) to planar lightwave circuits (PLCs). The SSC is a laterally tapered waveguide that can be fabricated simply by the conventional fabrication process. The structure is composed of a core width converting region where the spot-size is converted efficiently, and a core width fine-tuning region where the cut-position tolerance is relaxed. We have applied this structure to a 1.5%-/spl Delta/ silica-based waveguides and reduced the single-mode fiber coupling loss to less than 0.5 dB/point. The SSC provides a large cut-position tolerance that enables angle polishing of the PLC endfaces to prevent reflection and low-loss connection of pigtail fibers. The center channel insertion loss of the AWG module was reduced from 4.2 to 2.2 dB, and the reflection was less than -60 dB.  相似文献   

10.
Low chromatic-dispersion flat-top arrayed waveguide grating filter   总被引:1,自引:0,他引:1  
Kitoh  T. Inoue  Y. Itoh  M. Kotoku  M. Hibino  Y. 《Electronics letters》2003,39(15):1116-1118
A low chromatic dispersion (CD) flat-top arrayed waveguide grating (AWG) filter with a novel parabolic waveguide horn is proposed, and a 100 GHz-spacing 16-channel flat-top AWG that reduces the CD from -20.9 to -3.2 ps/nm has been successfully fabricated.  相似文献   

11.
秦政坤  马春生 《电子学报》2011,39(3):609-612
本文基于阵列波导光栅(AWG)的传输理论,利用含氟聚合物(PFS-co-GMA)共聚物材料,对17×17信道光谱响应平坦化AWG波分复用器进行了参数优化.由于在聚合物阵列波导光栅器件的制备过程中,选用了反应离子刻蚀(RIE)工艺和蒸汽回溶技术,形成的梯形截面波导芯,使AWG传输的光产生相位移,导致传输光谱移动,引起串扰...  相似文献   

12.
Four- and eight-channel arrayed-waveguide grating (AWG) and fixed optical add-drop multiplexer (OADM) devices with channel spacing of 1200 and 600 GHz have been fabricated using super-high refractive index contrast (/spl Delta/n=0.020) triazine containing polymers. Accordingly, the size of the four-channel AWG was only 10/spl times/3 mm and the insertion loss was 3 dB.  相似文献   

13.
对硅基二氧化硅阵列波导光栅解复用器(AWG DEMUX)的偏振相关损耗(PDL)进行了优化。理论分析了引起AWG偏振相关性的物理因素以及消除偏振相关性的工艺方法和条件。利用化学气相沉积、光刻和刻蚀等半导体工艺制备了AWG DEMUX芯片,并结合理论分析对包层材料中的硼(B)、磷(P)含量进行了优化调整,成功地将芯片的PDL降低至0.12 dB,使PDL参数满足芯片的商用化需求。  相似文献   

14.
A wavelength multiplexer or demultiplexer plays ani mportant role in all wavelength division multiplexing( WDM) system.Silica-basedarrayed waveguide gratings(AWGs) offer attractive featuresinthis area due to theadvantage of large output channels and lowlo…  相似文献   

15.
A fibre-pigtailed 25 GHz-spacing 256 channel arrayed-waveguide grating (AWG) module has been fabricated. The module was composed of an AWG chip with a Δ of 1.5%, a fan-out planar lightwave circuit (PLC) with a A of 0.75%, an input fibre and two 128 fibre arrays. To improve the coupling loss of the 256 output fibres, a new PLC-fibre connection using cascaded laterally-tapered waveguides was developed. The fibre-pigtailing loss is reduced to only 1.1 dB and a multiplexer with a low insertion loss of 1.9-3.9 dB is realised  相似文献   

16.
给出一种基于SOI材料结构紧凑的新颖AWG器件,它是将一个全内反射波导镜插入原波导阵列中间,并且利用全内反射时产生的相位差进行TE、TM模偏振补偿的方法,该器件具有尺寸小、制作工艺简单等特点.同时,给出一些实验结果,实验结果证实这种结构的AWG器件是可行的.  相似文献   

17.
InP 阵列波导光栅(AWG)是InP 基单片多波长转换器中的重要单元。采用深脊型波导结构,设计了一种10通道、通道间隔200GHZ(1.6nm)的偏振无关型InP基阵列波导光栅。采用外延技术、光刻、感应耦合等离子体刻蚀技术等在实验室制造出了这种AWG。经过测试,插入损耗约为-8dB,串扰小于-17dB,中心通道和旁边通道的通道均匀性基本上在3dB左右。  相似文献   

18.
A 45-channel 100 GHz arrayed waveguide grating (AWG) based on Si nanowire waveguides is designed, simulated and fabricated. Transfer function method is used in the spectrum simulation. The simulated results show that the central wavelength and channel spacing are 1 562.1 nm and 0.8 nm, respectively, which are in accord with the designed values, and the crosstalk is about ?23 dB. The device is fabricated on silicon-on-insulator (SOI) substrate by deep ultraviolet lithography (DUV) and inductively coupled plasma (ICP) etching technologies. The 45-channel 100 GHz AWG exhibits insertion loss of 6.5 dB and crosstalk of ?8 dB. This work has been supported by the National High Technology Research and Development Program of China (No.2015AA016902), and the National Natural Science Foundation of China (Nos.61435013 and 61405188). E-mail:zhangjiashun@semi.ac.cn   相似文献   

19.
We have proposed the fabrication of small bend structures using trenches along both sides of the core, filled with low-refractive index material, in order to miniaturise silica planar lightwave circuits. The minimum bending radius of a silica waveguide was reduced from 2 mm to 200 mum by filling the trenches with low-refractive index material. The local lateral relative refractive index difference (Delta) was increased to 8.64%. We fabricated cascade S-shaped waveguides to estimate a bend loss of the proposed structure. Moreover, we applied those structures to arrayed-waveguide gratings (AWG)s. Both 8-channel, 100-GHz channel-spacing and 8-channel, 12.5-GHz channel-spacing AWGs were successfully fabricated. Compared with conventional AWGs, sizes of these devices were reduced by factors of about 2 and 4, respectively.  相似文献   

20.
设计、仿真并制备了一种用于光纤布拉格光栅(FBG)解调的阵列波导光栅(AWG)芯片。该芯片基于SOI衬底进行制备,并在AWG的输入/输出波导、阵列波导与平板波导之间采用双刻蚀结构进行优化。经仿真,该AWG的插入损耗为1.5dB,串扰小于 -20dB,3dB带宽为1.5nm。优化后的AWG芯片采用深紫外光刻技术、电感耦合等离子体等技术制备。经测试,该AWG的插入损耗为3dB,串扰小于 -20dB,3dB带宽为2.3nm。搭建了基于该AWG的解调系统,解调实验结果表明,该系统在0.8nm范围内的解调精度可达11.26pm,波长分辨率为6pm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号