首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the importance of oxynitridation using radical-oxygen and -nitrogen to form a low-leakage and highly reliable 1.6-nm SiON gate-dielectric without performance degradation in n/pFETs. It was found that oxidation using radical-oxygen forms high-density 1.6-nm SiO/sub 2/, which is ten times more reliable than low-density SiO/sub 2/ formed by oxygen-ions in n/pFETs and is suitable for the base layer of nitridation. Nitrifying SiO/sub 2/ using radical-nitrogen facilitates surface nitridation of SiO/sub 2/, maintains an ideal SiON-Si substrate interface, and reduces the gate leakage current. The 1.6-nm SiON formed by radical-oxygen and -nitrogen produces comparable drivability in n/pFETs, has one and half orders of magnitude less gate leakage in nFETs, one order of magnitude less gate leakage in pFETs, and is ten times more reliable in n/pFETs than 1.6-nm SiO/sub 2/ formed by radical-oxygen.  相似文献   

2.
We have demonstrated that oxynitridation using radical-oxygen (radical-O) and radical-nitrogen (radical-N) improves reverse narrow channel effects (RNCE) and reliability in sub-1.5-nm-thick gate-SiO/sub 2/ FETs with narrow channel and shallow-trench isolation (STI), suitable for high-density SRAM and logic devices. The STI formation followed by oxidation for the gate-dielectric causes various orientations of the Si surface, and thus, thermal oxidation forms the partial thin SiO/sub 2/ and causes RNCE and reliability degradation. Oxidation using radical-O forms uniform SiO/sub 2/ on Si[100] and Si[111] surfaces and suppresses RNCE in a sub-1.5 nm-thick gate-SiO/sub 2/ FET with STI. Nitrifying the SiO/sub 2/ using radical-N increases the physical thickness while maintaining the oxide equivalent thickness on both Si[111] and Si[100] surfaces, thus producing a low-leakage and highly reliable sub-1.5 nm-thick gate-SiON.  相似文献   

3.
The effects of the nitrogen profile in the SiON-interfacial layer (IL) on the mobility in FETs employing a HfAlO/SiON gate dielectric have been investigated. In order to suppress the interdiffusion between HfAlO and SiON, the nitrogen concentration in SiON should be higher than 15 at%, while the substrate interface should be oxygen-rich in order to suppress the mobility reduction. By using an NO reoxidation of NH/sub 3/ formed 0.4-nm-thick silicon nitride, the mobility reduction due to the SiON-IL was successfully suppressed, and electron and hole mobility of 92% and 88% of those for SiO/sub 2/ at V/sub g/=1.1 V were obtained for HfAlO/SiON with equivalent oxide thickness (EOT) of 1.1 nm. By using nitrogen profile engineered SiON-IL, good equvalent oxide thickness (EOT) uniformity, low EOT, low gate leakage current, low defect density, and symmetrical threshold voltage were all achieved, indicating that a poly-Si/HfAlO/SiON gate stack would be a candidate as an alternative gate structure for low standby power FETs of half-pitch (hp)65 and hp45 technology nodes.  相似文献   

4.
We investigate the thermal stability of HfTaON films prepared by physical vapor deposition using high resolution transmission electronic microscope (HRTEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that the magnetron-sputtered HtTaON films on Si substrate are not stable during the post-deposition an-healing (PDA). HfTaON will react with Si and form the interfacial layer at the interface between HfTaON and Si substrate. Hf-N bonds are not stale at high temperature and easily replaced by oxygen, resulting in significant loss of nitrogen from the bulk film. SiO2 buffer layer introduction at the interface of HfTaON and Si substrate may effec-tively suppress their reaction and control the formation of thicker interfacial layer. But SiO2 is a low k gate dielectric and too thicker SiO2 buffer layer will increase the gate dielectric's equivalent oxide thickness. SiON prepared by oxidation of N-implanted Si substrate has thinner physical thickness than SiO2 and is helpful to reduce the gate dielectric's equivalent oxide thickness.  相似文献   

5.
Two key parameters for silicon MOSFET scaling, equivalent oxide thickness (EOT) and gate leakage current density (J/sub g/) are measured and modeled for silicon oxynitride (Si-O-N) gate dielectrics formed by plasma nitridation of SiO/sub 2/. It is found that n-MOSFET inversion J/sub g/ is larger than p-MOSFET inversion J/sub g/ when the gate dielectric consists of less than 27% nitrogen atoms, indicating substrate injection of electrons is dominant for this range of plasma nitrided Si-O-N. To examine the intrinsic scaling of Si-O-N, we model EOT and n-MOSFET J/sub g/ for sub-2-nm physically thick gate dielectrics as a function of film physical thickness and nitrogen content. The model has four free fitting parameters and unlike existing models does not assume a priori the values of the oxide and nitride dielectric constant, barrier height, or effective mass. It indicates that at a given EOT, leakage current of n-MOSFETs with Si-O-N gate dielectrics reaches a minimum at a specific nitrogen content. Through the use of this model, we find that plasma nitrided Si-O-N can meet the 65-nm International Technology Roadmap for Semiconductors specifications for J/sub g/, and we estimate the nitrogen concentration required for each node and application.  相似文献   

6.
We have developed high-quality 1.5-nm-SiON gate dielectrics using recoiled-oxygen-free processing. We found that oxygen recoiling from a sacrificial oxide during ion implantation or defects induced by recoiled oxygen change the growth mechanism of SiON gate dielectrics of less than 2 nm and degrade the controllability of film thickness, film quality, and device electrical characteristics. PMOSFETs using the recoiled-oxygen-free process and As-implantation for the channel have better controllability of gate dielectric thickness, up to one-third less gate leakage current, a hundred times more reliable TDDB characteristics, and a 20% improvement in drain current compared to the conventional process. Thus, an Si substrate without recoiled oxygen is essential in forming high-quality SiON gate dielectrics of less than 1.5 nm. In addition, we will show that anneal before SiON gate dielectric formation removes the recoiled oxygen from the Si substrate and improves controllability of the gate SiON gate dielectric thickness  相似文献   

7.
Low-frequency noise measurements and analysis were performed on n-channel MOSFETs with HfSiON as the gate-dielectric material. The role of SiON interfacial-layer thickness was investigated. It was observed that these fluctuations can be described by the unified flicker-noise model that attributes noise to correlated carrier-number/mobility fluctuations due to trapping states in the gate dielectric. The model was modified to include the effect of different gate stack layers on the observed noise. The carrier-number fluctuations were found to dominate over the correlated mobility fluctuations in the measured bias range and more so at the lower gate overdrives. The noise magnitude showed a decrease with increasing SiON interfacial-layer thickness. Furthermore, an inverse-proportionality relationship was revealed between the effective oxide trap density and SiON thickness.  相似文献   

8.
The low-frequency noise has been studied in nMOSFETs with an HfO/sub 2/--SiO/sub 2/ gate stack, for different thickness of the SiO/sub 2/ interfacial layer (IL). It is observed that the 1/f-like noise in linear operation, is about 50 times higher in the HfO/sub 2/ devices with a 0.8-nm chemical oxide IL, compared with the 4.5-nm thermal oxide reference n-channel transistors. This is shown to relate to the correspondingly higher trap density in the dielectric material. In addition, it is demonstrated that the noise rapidly reduces with increasing thickness of the IL. From the results for a 2.1-nm SiO/sub 2/ IL, it is derived that at a certain gate voltage range, electron tunneling to a defect band in the HfO/sub 2/ layer may contribute to a pronounced increase in the flicker noise.  相似文献   

9.
Building on a previously presented compact gate capacitance (C/sub g/-V/sub g/) model, a computationally efficient and accurate physically based compact model of gate substrate-injected tunneling current (I/sub g/-V/sub g/) is provided for both ultrathin SiO/sub 2/ and high-dielectric constant (high-/spl kappa/) gate stacks of equivalent oxide thickness (EOT) down to /spl sim/ 1 nm. Direct and Fowler-Nordheim tunneling from multiple discrete subbands in the strong inversion layer are addressed. Subband energies in the presence of wave function penetration into the gate dielectric, charge distributions among the subbands subject to Fermi-Dirac statistics, and the barrier potential are provided from the compact C/sub g/-V/sub g/ model. A modified version of the conventional Wentzel-Kramer-Brillouin approximation allows for the effects of the abrupt material interfaces and nonparabolicities in complex band structures of the individual dielectrics on the tunneling current. This compact model produces simulation results comparable to those obtained via computationally intense self-consistent Poisson-Schro/spl uml/dinger simulators with the same MOS devices structures and material parameters for 1-nm EOTs of SiO/sub 2/ and high-/spl kappa//SiO/sub 2/ gate stacks on (100) Si, respectively. Comparisons to experimental data for MOS devices with metal and polysilicon gates, ultrathin dielectrics of SiO/sub 2/, Si/sub 3/N/sub 4/, and high-/spl kappa/ (e.g., HfO/sub 2/) gate stacks on (100) Si with EOTs down to /spl sim/ 1-nm show excellent agreement.  相似文献   

10.
Gate leakage of deep-submicron MOSFET with stack high-k dielectrics as gate insulator is studied by building a model of tunneling current. Validity of the model is checked when it is used for MOSFET with SiO2 and high-k dielectric material as gate dielectrics, respectively, and simulated results exhibit good agreement with experimental data. The model is successfully used for a tri-layer gate-dielectric structure of HfON/HfO2/HfSiON with a U-shape nitrogen profile and a like-Si/SiO2 interface, which is proposed to solve the problems of boron diffusion into channel region and high interface-state density between Si and high-k dielectric. By using the model, the optimum structural parameters of the tri-layer dielectric can be determined. For example, for an equivalent oxide thickness of 2.0 nm, the tri-layer gate-dielectric MOS capacitor with 0.3-nm HfON, 0.5-nm HfO2 and 1.2-nm HfSiON exhibits the lowest gate leakage.  相似文献   

11.
We have integrated the low work function NiSi:Hf gate on high-/spl kappa/ LaAlO/sub 3/ and on smart-cut Ge-on-insulator (SC-GOI) n-MOSFETs. At 1.4-nm equivalent oxide thickness, the NiSi:Hf-LaAlO/sub 3//SC-GOI n-MOSFET has comparable gate leakage current with the control Al gate on LaAlO/sub 3/-Si MOSFETs that is /spl sim/5 orders of magnitude lower than SiO/sub 2/. In addition, the LaAlO/sub 3//SC-GOI n-MOSFET with a metal-like fully NiSi:Hf gate has high peak electron mobility of 398 cm/sup 2//Vs and 1.7 times higher than LaAlO/sub 3/-Si devices.  相似文献   

12.
A simple technique to form high-quality hafnium silicon oxynitride (HfSiON) by rapid thermal processing oxidation of physical vapor deposition hafnium nitride (HfN) thin films on ultrathin silicon oxide (SiO/sub 2/) or silicon oxynitride (SiON) layer is presented. Metal TaN gate electrode is also introduced into such HfSiON stacks. Excellent performances including large electron mobility (85%SiO/sub 2/at0.2 MV/cm), low leakage current (10/sup -4/ of SiO/sub 2/), and superior time-dependant dielectric breakdown reliability are achieved in HfSiON/SiO/sub 2/ stacks, and these results suggest such stacks are very promising for the low-power SOC applications in the near future. In addition, the improvement of the electron mobility in this HfSiON/SiO/sub 2/ stack by a reduction of the border traps in the HfSiON dielectric is demonstrated.  相似文献   

13.
High-performance low-temperature poly-Si thin-film transistors (TFTs) using high-/spl kappa/ (HfO/sub 2/) gate dielectric is demonstrated for the first time. Because of the high gate capacitance density and thin equivalent-oxide thickness contributed by the high-/spl kappa/ gate dielectric, excellent device performance can be achieved including high driving current, low subthreshold swing, low threshold voltage, and high ON/OFF current ratio. It should be noted that the ON-state current of high-/spl kappa/ gate-dielectric TFTs is almost five times higher than that of SiO/sub 2/ gate-dielectric TFTs. Moreover, superior threshold-voltage (V/sub th/) rolloff property is also demonstrated. All of these results suggest that high-/spl kappa/ gate dielectric is a good choice for high-performance TFTs.  相似文献   

14.
In this letter, the effect of silicon and nitrogen on the electrical properties of TaSi/sub x/N/sub y/ gate electrode were investigated. The TaSi/sub x/N/sub y/ films were deposited on SiO/sub 2/ using reactive cosputtering of Ta and Si target in Ar and N/sub 2/ ambient. The thermal stability of TaSi/sub x/N/sub y//SiO/sub 2//p-type Si stacks was evaluated by measuring the flatband voltage and equivalent oxide thickness at 400/spl deg/C and 900/spl deg/C in Ar. It was found that under high temperature anneals, Si-rich TaSi/sub x/N/sub y/ films increased and this was attributed to the formation of a reaction layer at the electrode-dielectric interface. Reducing the Si content alone did not prevent the formation of this reaction layer while removing Si completely by utilizing TaN resulted in work functions that were too high. The presence of both Si and N was deemed necessary and their content was critical in obtaining optimized TaSi/sub x/N/sub y/ gates that are suitable for NMOS devices.  相似文献   

15.
Ting  W. Ahn  J.H. Kwong  D.L. 《Electronics letters》1991,27(12):1046-1047
Ultrathin (58 AA equivalent oxide thickness) stacked Si/sub 3/N/sub 4//SiO/sub 2/ (NO) films with the bottom oxide prepared by rapid thermal oxidation (RTO) in O/sub 2/ and the top nitride deposited by rapid thermal processing chemical vapour deposition (RP-CVD) were fabricated and studied. Results show that the charge trapping and leakage current of the stacked films are comparable to those of pure SiO/sub 2/ and low-field breakdown events are significantly reduced. By scaling down the top nitride thickness the commonly observed flat-band voltage instability of MNOS devices was minimised, but the low-defect property was still preserved.<>  相似文献   

16.
For gate oxide thinned down to 1.9 and 1.4 nm, conventional methods of incorporating nitrogen (N) in the gate oxide might become insufficient in stopping boron penetration and obtaining lower tunneling leakage. In this paper, oxynitride gate dielectric grown by oxidation of N-implanted silicon substrate has been studied. The characteristics of ultrathin gate oxynitride with equivalent oxide thickness (EOT) of 1.9 and 1.4 nm grown by this method were analyzed with MOS capacitors under the accumulation conditions and compared with pure gate oxide and gate oxide nitrided by N/sub 2/O annealing. EOT of 1.9- and 1.4-nm oxynitride gate dielectrics grown by this method have strong boron penetration resistance, and reduce gate tunneling leakage current remarkably. High-performance 36-nm gate length CMOS devices and CMOS 32 frequency dividers embedded with 57-stage/201-stage CMOS ring oscillator, respectively, have been fabricated successfully, where the EOT of gate oxynitride grown by this method is 1.4 nm. At power supply voltage V/sub DD/ of 1.5 V drive current Ion of 802 /spl mu/A//spl mu/m for NMOS and -487 /spl mu/A//spl mu/m for PMOS are achieved at off-state leakage I/sub off/ of 3.5 nA//spl mu/m for NMOS and -3.0 nA//spl mu/m for PMOS.  相似文献   

17.
By using a high-temperature gate-first process, HfN--HfO/sub 2/-gated nMOSFET with 0.95-nm equivalent oxide thickness (EOT) was fabricated. The excellent device characteristics such as the sub-1-nm EOT, high electron effective mobility (peak value /spl sim/232 cm/sup 2//V/spl middot/s) and robust electrical stability under a positive constant voltage stress were achieved. These improved device performances achieved in the sub-1-nm HfN--HfO/sub 2/-gated nMOSFETs could be attributed to the low interfacial and bulk traps charge density of HfO/sub 2/ layer due to the 950/spl deg/C high-temperature source/drain activation annealing process after deposition of the HfN--HfO/sub 2/ gate stack.  相似文献   

18.
Deuterium was incorporated into the HfAlOx /SiON gate dielectric by the use of heavy water (D/sub 2/O) instead of H/sub 2/O in the atomic layer deposition (ALD) process of HfAlOx. The HfAlOx formed by D/sub 2/O-ALD acts as a deuterium reservoir, and the deuterium atoms are effectively incorporated into the SiON after full CMOS processing. It is clarified that the deuterium incorporation suppresses interfacial trap generation and interfacial SiON breakdown, while charge-trapping in the HfAlOx bulk traps is barely affected. The D/sub 2/O-ALD process is useful for improving the interfacial layer reliability under gate negative stress; therefore it is not only effective for HfAlOx, but also for high-/spl kappa//SiO/sub 2/(SiON) gate stacks with other high-/spl kappa/ materials such as HfO/sub 2/ or HfSiON.  相似文献   

19.
Effects of fluorine (F) incorporation on the reliabilities of pMOSFETs with HfO/sub 2//SiON gate stacks have been studied. In this letter, fluorine was incorporated during the source/drain implant step and was diffused into the gate stacks during subsequent dopant activation. The authors found that F introduction only negligibly affects the fundamental electrical properties of the transistors, such as threshold voltage V/sub th/, subthreshold swing, gate leakage current, and equivalent oxide thickness. In contrast, reduced generation rates in interface states and charge trapping under constant voltage stress and bias temperature stress were observed for the fluorine-incorporated split. Moreover, the authors demonstrated for the first time that F incorporation could strengthen the immunity against plasma charging damage.  相似文献   

20.
A simple, cost-effective, and room temperature process was proposed to prepare high-k gate dielectrics. An aluminum oxide (Al/sub 2/O/sub 3/) gate dielectric was prepared by oxidation of ultrathin Al film in nitric acid (HNO/sub 3/) at room temperature then followed by high-temperature annealing in O/sub 2/ or N/sub 2/. The substrate injection current behavior and interface trap-induced capacitance were introduced to investigate the interfacial property between the gate dielectric and Si substrate. Al/sub 2/O/sub 3/ gate dielectric MOS capacitors with and without initial SiO/sub 2/ layers were characterized. It was shown that the Al/sub 2/O/sub 3/ gate dielectrics with initial oxide exhibit better electrical properties than those without. The 650/spl deg/C N/sub 2/-POA Al/sub 2/O/sub 3/-SiO/sub 2/ sample with an equivalent oxide thickness of 18 /spl Aring/ exhibits three orders of magnitude reduction in gate leakage current in comparison with the conventional thermal SiO/sub 2/ sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号