首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian adenylyl cyclases have two homologous cytoplasmic domains (C1 and C2), and both domains are required for the high enzymatic activity. Mutational and genetic analyses of type I and soluble adenylyl cyclases suggest that the C2 domain is catalytically active and the C1 domain is not; the role of the C1 domain is to promote the catalytic activity of the C2 domain. Two amino acid residues, Asn-1025 and Arg-1029 of type II adenylyl cyclase, are conserved among the C2 domains, but not among the C1 domains, of adenylyl cyclases with 12 putative transmembrane helices. Mutations at each amino acid residue alone result in a 30-100-fold reduction in Kcat of adenylyl cyclase. However, the same mutations do not affect the Km for ATP, the half-maximal concentration (EC50) for the C2 domain of type II adenylyl cyclase to associate with the C1 domain of type I adenylyl cyclase and achieve maximal enzyme activity, or the EC50 for forskolin to maximally activate enzyme activity with or without Gsalpha. This indicates that the mutations at these two residues do not cause gross structural alteration. Thus, these two conserved amino acid residues appear to be crucial for catalysis, and their absence from the C1 domains may account for its lack of catalytic activity. Mutations at both amino acid residues together result in a 3,000-fold reduction in Kcat of adenylyl cyclase, suggesting that these two residues have additive effects in catalysis. A second site suppressor of the Asn-1025 to Ser mutant protein has been isolated. This suppressor has 17-fold higher activity than the mutant and has a Pro-1015 to Ser mutation.  相似文献   

2.
The Rho family of small GTP-binding proteins are downregulated by an intrinsic GTPase, which is enhanced by GTPase-activating proteins (GAPs). RhoGAPs contain a single conserved arginine residue that has been proposed to be involved in catalysis. Here, the role of this arginine has been elucidated by mutagenesis followed by determination of catalytic and equilibrium binding constants using single-turnover kinetics, isothermal titration calorimetry, and scintillation proximity assays. The turnover numbers for wild-type, R282A, and R282K RhoGAPs were 5.4, 0.023, and 0.010 s-1, respectively. Thus, the function of this arginine could not be replaced by lysine or alanine. Nevertheless, the R282A mutation had a minimal effect on the binding affinity of RhoGAP for either Rho. GTP or Rho.GMPPNP, which confirms the importance of the arginine residue for catalysis as opposed to formation of the protein-protein complex. The R282A mutant RhoGAP still increased the hydrolysis rate of Rho.GTP by 160-fold, whereas the wild-type enzyme increased it by 38000-fold. We conclude that this arginine contributes half of the total reduction of activation energy of catalysis. In the presence of aluminum fluoride, the R282A mutant RhoGAP binds almost as well as the wild type to Rho.GDP, demonstrating that the conserved arginine is not required for this interaction. The affinity of wild-type RhoGAP for the triphosphate form of Rho is similar to that for Rho.GDP with aluminum fluoride. These last two observations show that this complex is not associated with the free energy changes expected for the transition state, although the Rho.GDP.AlF4-.RhoGAP complex might well be a close structural approximation.  相似文献   

3.
tRNA pseudouridine synthase I catalyzes the conversion of uridine to pseudouridine at positions 38, 39, and/or 40 in the anticodon loop of many tRNAs. Pseudouridine synthase I was cloned behind a T7 promoter and expressed in Escherichia coli to about 20% of total soluble proteins. Fluorouracil-substituted tRNA caused a time-dependent inactivation of pseudouridine synthase I and formed a covalent complex with the enzyme that involved the FUMP at position 39. Asp60, conserved in all known and putative pseudouridine synthases, was mutated to amino acids with diverse side chains. All Asp60 mutants bound tRNA but were catalytically inactive and failed to form covalent complexes with fluorouracil-substituted tRNA. We conclude that the conserved Asp60 is essential for pseudouridine synthase activity and propose mechanisms which involve this residue in important catalytic roles.  相似文献   

4.
OBJECTIVE: In recent years, there has been debate concerning whether distinct subgroups exist within the eating disorder, not otherwise specified (EDNOS) diagnostic category. One subgroup that has been suggested is binge-eating disorder (BED). While BED has received some research attention, relatively little is known about other possible subgroups within the EDNOS category. The purpose of the present study is to empirically investigate whether distinct subgroups exist within the diagnostic category of EDNOS. METHOD: Participants were 53 EDNOS patients who presented to psychotherapy clinics for treatment of an eating disorder. Information gathered from a clinical assessment, which included a clinical interview and self-report questionnaires, was used in the analyses of the study. RESULTS: Using cluster analytic procedures, two subgroups of patients diagnosed with EDNOS were identified. The two subgroups differed from each other in terms of weight, binging, and body image variables. Specifically, the second subgroup (of 11 patients) appeared to be a distinct subgroup of overweight binge-eating patients, while the first subgroup appeared to be a heterogenous group of EDNOS patients. The overweight binge-eating subgroup was significantly higher in current weight, in reported highest adult weight, in reported higher lowest adult weight, and had more binges per week than the heterogenous EDNOS subgroup. Interestingly, the two subgroups did not differ in terms of self-reported purging and/or compensatory behaviors (e.g., vomiting and laxative use). DISCUSSION: The results of the present study provide preliminary support for a distinct subgroup within the EDNOS diagnostic category. This subgroup resembles BED, with the exception of the presence of purging behaviors. The findings of the present study suggest the need to further investigate the exclusionary criteria of purging/compensatory behaviors for the BED diagnosis.  相似文献   

5.
Vaccinia virus RNA capping enzyme, a heterodimer of 95- and 31-kDa subunits, catalyzes transfer of GMP from GTP to the 5'-diphosphate terminus of RNA via a covalent enzyme-guanylate intermediate. The GMP residue is attached to the 95-kDa subunit through a phosphoamide bond to the epsilon-amino group of a lysine residue. The amino acid sequence of the large subunit includes a lysine-containing motif, Tyr-X-X-X-Lys260-Thr-Asp-Gly, that is conserved in the RNA guanylyltransferases encoded by Shope fibroma virus and Saccharomyces cerevisiae. The KXDG motif is also encountered at the sites of covalent adenylylation of bacteriophage T4 RNA ligase and mammalian DNA ligase I (Thogerson, H. C., Morris, H. R., Rand, K. N., and Gait, M. J. (1985) Eur. J. Biochem. 147, 325-329; Tomkinson, A. E., Totty, N. F., Ginsburg, M., and Lindahl, T. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 400-404). We find that conservative amino acid substitutions at three out of four positions within the KTDG sequence of vaccinia capping enzyme either prevent or strongly inhibit enzyme-guanylate formation. The conserved motif is therefore an essential component of the guanylyltransferase domain. Lys260 is implicated as the active site. Comparison of the sequences of capping enzymes and polynucleotide ligases from diverse sources suggests that KX(D/N)G may be a signature element for covalent catalysis in nucleotidyl transfer.  相似文献   

6.
Transgenic mice that overexpressed IGFBP-1 are hyperinsulinemic in the first week of life and gradually develop fasting hyperglycemia. In adult transgenic mice, the hypoglycemic response to IGF-I but not insulin or des (1-3) IGF-I was attenuated (P < 0.05) compared with wild-type mice. Furthermore, in isolated adipocytes from transgenic mice, the stimulatory effect of IGF-I but not insulin on 2-deoxy-[3H]-glucose uptake was reduced (P < 0.02). In contrast, in isolated soleus muscle, the effects of both IGF-I and insulin on 2-deoxy-3H-glucose uptake and on [3H]-glucose incorporation into glycogen were significantly reduced compared to wild-type mice. The decline in specific activity of the 2-deoxy-3H-glucose, a measure of glucose appearance in the circulation, was more marked in transgenic animals (P < 0.05). In addition, tissue uptake of glucose was significantly higher in diaphragm, heart, intestine, liver, soleus muscle, and adipose tissue from fasting transgenic mice. Plasma concentrations of alanine, lysine, and methionine were also elevated in transgenic mice. These data suggest that overexpression of IGFBP-1 attenuates the hypoglycemic effect of endogenous IGF-I, which is initially compensated for by enhanced pancreatic insulin production. However, in adult mice pancreatic insulin content is reduced, insulin resistance is demonstrable in skeletal muscle and fasting hyperglycemia develops.  相似文献   

7.
BACKGROUND: We wished to investigate central serotonergic function in untreated schizophrenia. METHOD: Thirteen drug-naive, DSM-III-R schizophrenic patients were compared with sex, race, age, weight and menstrual phase matched controls. Plasma prolactin and cortisol responses to a specific serotonergic probe, d-fenfluramine, were measured along with BPRS ratings. RESULTS: Prolactin responses were enhanced in schizophrenic patients compared to controls (P < 0.05) and were correlated positively with BPRS items for depression, anxiety and guilt. Baseline cortisol was also raised in those with schizophrenia (P < 0.001). CONCLUSIONS: Central serotonergic tone may be raised in acute, drug-naive schizophrenia and may be associated with the presence of affective symptomatology.  相似文献   

8.
9.
Cyclic AMP-Phosphodiesterases (cAMP-PDEs) catalyse the hydrolysis cAMP to AMP and thus serve to modulate the ligand-->adenylate cyclase-->cAMP-->PKA signal transduction pathway. PDEs exist as a multigene family of enzymes that bear significant sequence homology in the catalytic domains. The sequence alignment of these domains has revealed the presence of two histidine motifs: motif I, HNXXH, and motif II, HDXXH. These amino acid sequences are canonical motifs, which act as ligands for divalent metal cations required for catalytic activity. In this paper, we report human monocyte PDE4A to be a zinc-binding protein. Substitution by site-directed mutagenesis of either histidine in motif I by serine, which is not a ligand for metals, results in complete loss of catalytic activity and loss of sensitivity to divalent metal cation activation. However, similar mutations in motif II gave proteins that retained both approximately 50% of initial activity and the ability to respond differentially to Mg2+, Mn2+ and Co2+. Moreover the motif II mutants exhibited both functional group requirements and retained their pKa values. When the inactive mutants were affinity-labelled with 8-BDB-TcAMP and probed with antibody against cAMP or antibody against PDE4A, Western blots were unaltered. These results show that the conserved histidines in motif I are an absolute requirement for catalytic activity, whereas motif II histidines are required only to achieve maximum activity.  相似文献   

10.
We examined the behavior of fetal rat chondrocytes cultured on a bioactive glass-ceramic containing apatite and wollastonite (A.W.G.C.). Biomaterial surface topography and profiles were evaluated by bidimensional profilometry and revealed a rough surface for the glass-ceramic compared to the plastic coverslips used as controls. Chondrocyte attachment was evaluated by measuring the number of attached cells after one day of culture and by morphological observations. Chondrocytes attached in great numbers to the material surface by means of focal contacts containing vinculin and beta1-integrin. Fluorescent labeling of actin and vimentin revealed a poor spreading of chondrocytes on the bioactive glass-ceramic compared to the plastic coverslips, where the cells appeared to adhere intimately to the surface and exhibited polygonal arrays of stress fibers. During the following days of culture, chondrocytes proliferated, colonized the surface of the material, and, finally, on day 10, formed nodular structures composed of round cells separated by a dense extracellular matrix. Furthermore, these clusters of round cells were positive for type II collagen and chondroitin sulfate, both hard markers of the chondrocyte phenotype. In addition, protein synthesis, alkaline phosphatase activity, and proteoglycan production were found to increase gradually during the culture period with a pattern similar to that observed on control cultures. These results demonstrate that the bioactive glass-ceramic tested in this study appears to be a suitable substrate for in vitro chondrocyte attachment, differentiation, and matrix production.  相似文献   

11.
The diheme cytochrome c peroxidase from Paracoccus denitrificans was modified with the histidine-specific reagent diethyl pyrocarbonate. At low excess of reagent, 1 mol of histidine was modified in the oxidized enzyme, and modification was associated with loss of the ability to form the active state. With time, the modification reversed, and the ability to form the active state was recovered. The agreement between the spectrophotometric measurement of histidine modification and radioactive incorporation using a radiolabeled reagent indicated little modification of other amino acids. However, the reversal of histidine modification observed spectrophotometrically was not matched by loss of radioactivity, and we propose a slow transfer of the ethoxyformyl group to an unidentified amino acid. The presence of CN- bound to the active peroxidatic site of the enzyme led to complete protection of the essential histidine from modification. Limited subtilisin treatment of the native enzyme followed by tryptic digest of the C-terminal fragment (residues 251-338) showed that radioactivity was located in a peptide containing a single histidine at position 275. We propose that this conserved residue, in a highly conserved region, is central to the function of the active mixed-valence state.  相似文献   

12.
13.
gamma-Glutamyl transpeptidase possesses two histidine residues at positions 383 and 505 which are conserved in all mammalian and bacterial species. In order to elucidate the functions of these residues, we prepared mutants in which these residues were replaced by Ala. Kinetic analysis of the hydrolysis of L-gamma-glutamyl-p-nitroanilide indicated that substitution at His-383 decreased the Vmax value to 14% of that of the wild type, but had no effect on Vmax/K(m). In reactions involving glycylglycine as the acceptor substrate, the Vmax value of this mutant decreased to 38% with little alteration of Vmax/K(m) for L-gamma-glutamyl-p-nitroanilide as a gamma-glutamyl donor, but with a significant reduction of Vmax/K(m) for the acceptor. These results show that this substitution causes impairment of the step in which the free enzyme is regenerated from the gamma-glutamyl enzyme by water or an acceptor substrate. On the other hand, replacement of His-505 resulted in a decrease of the Vmax value for transpeptidation to about 10% of that of the wild type despite no substantial effect on the Vmax value for the hydrolysis reaction. However, this substitution did not affect Vmax/K(m) for the acceptor on transpeptidation. Thus, the formation of a non-productive enzyme-substrate complex with the acceptor substrate would decrease the Vmax value on transpeptidation. These results suggest that His-383 plays an important catalytic role in facilitating the degradation of the gamma-glutamyl-enzyme through hydrolysis or transfer of the gamma-glutamyl moiety to an acceptor. It was also shown that His-505 is important in the formation of a complex of the gamma-glutamyl enzyme with the acceptor substrate even though it plays no critical role in the catalysis. Although the pH-dependence profile and the van't Hoff plot for the ionic group responsible for enzyme activity were consistent with the requirement of a histidine residue, neither of the conserved histidines could be assigned as such an ionic group. This suggests that another histidine residue(s) might play an essential role in the enzyme function.  相似文献   

14.
Germ-line stem cells (GSCs) serve as the source for gametogenesis in diverse organisms. We cloned and characterized the Drosophila piwi gene and showed that it is required for the asymmetric division of GSCs to produce and maintain a daughter GSC but is not essential for the further differentiation of the committed daughter cell. Genetic mosaic and RNA in situ analyses suggest that piwi expression in adjacent somatic cells regulates GSC division. piwi encodes a highly basic novel protein, well conserved during evolution. We isolated piwi homologs in Caenorhabditis elegans and humans and also identified Arabidopsis piwi-like genes known to be required for meristem cell maintenance. Decreasing C. elegans piwi expression reduces the proliferation of GSC-equivalent cells. Thus, piwi represents a novel class of genes required for GSC division in diverse organisms.  相似文献   

15.
16.
The role of the four histidine residues in receptor binding and activity of mouse nerve growth factor (NGF) was investigated using both site-directed mutagenesis and chemical modification with diethyl pyrocarbonate. Replacement of His-75 or His-84 with alanine resulted in decreased biological activity and decreased affinity for p140(trkA); however, with H75A only, a 5-fold increased affinity toward p75(LANR) was observed. The effect of simultaneous replacement of both His-75 and His-84 was neither additive nor synergistic. Slight perturbations in circular dichroism spectra and weakened self-association of the mutants indicated that His-75 and His-84 may be involved in stability, dimerization, and/or folding of NGF. Diethyl pyrocarbonate modification of His-4 and His-8 in the H75A/H84Q double mutant abolished neuritogenesis, binding to both receptors, and phosphorylation of p140(trkA) in PC12 cells. These chemical and mutational results confirm and clarify previous evidence for the involvement of His-75 and His-84 (Dunbar, J. C., Tregear, G. W., and Bradshaw, R. A. (1984) J. Protein Chem. 3, 349-356) or His-4 and His-8 (Shih, A., Laramee, G. R., Schmelzer, C. H., Burton, L. E., and Winslow, J. W. (1994) J. Biol. Chem. 269, 27679-27686) in receptor binding of NGF. At least three and possibly all four histidines, which are located in three spatially distinct regions, contribute to maintenance of functional sites that are essential for receptor binding and activity of NGF.  相似文献   

17.
Parascalene block is a technique of blocking the brachial plexus at the lateral border of the anterior scalene muscle superior to the clavicle. The objective of this study was to define the position of the needle in parascalene block with relationship to the brachial plexus and the dome of the pleura, which is important in determining whether this technique minimizes the incidence of pneumothorax. In the first group, 10 patients scheduled for minor upper extremity surgery agreed to parascalene block, which was performed in the computed tomographic examination room. In the second group, 10 volunteers agreed to have markers placed at the point where a needle would be inserted for parascalene block. The computed tomographic study at the level of the needle insertion or the marker revealed that this level was superior to the dome of the pleura. The distances from the skin to the interscalene groove and the interscalene groove to the first rib at the level of the needle insertion or the marker in both groups were measured to be 17 +/- 4 mm and 15 +/- 3 mm, respectively. This study suggests that the level of the parascalene needle entry is superior to the dome of the pleura. At this level, the incidence of pneumothorax should be minimized.  相似文献   

18.
19.
Two chlorophyll-binding antenna proteins in the photosystem II core, CP43 and CP47, are structurally similar and are thought to have evolved from a common ancestor. Several conserved histidine residues in hydrophobic regions of CP47 have been shown to be important for photosystem II structure, function, and energy transfer. The purpose of this study was to determine whether similarly located histidine residues in CP43 function in a similar way. Three conserved histidine residues in presumed membrane-spanning regions of CP43, His40, His105, and His119, were mutated to glutamine (Q) and tyrosine (Y). The strains H105Q, H119Q, and H119Y were photoautotrophs whereas H40Q, H40Y, and H105Y were obligate photoheterotrophs. The H40Y and H105Y strains lacked detectable amounts of photosystem II reaction centers and hence could not evolve oxygen whereas H40Q retained a significant amount of photosystem II and oxygen evolution capacity. The observation that mutation of histidine residues to tyrosine has more drastic effects than mutation of these residues to glutamine is in agreement with results obtained for CP47 and suggests the involvement of these residues in chlorophyll binding. The drastic functional changes observed upon mutating His40 and His105 of CP43 are similar to those observed when mutating the corresponding histidine residues in CP47, thus suggesting that the similarity between CP43 and CP47 extends to the relative importance of functionally relevant residues. Interestingly, the His40-->Gln mutation in CP43 had significant effects on photosystem II electron transfer in that it affected the thermodynamics of Q(A)- oxidation by Q(B) and increased the charge recombination rate between Q(A)- and donor side components. This indicates that relatively minor changes in CP43 can significantly impact the properties of the photosystem II reaction center. The implications of this finding are discussed.  相似文献   

20.
The isopenicillin N synthase of Cephalosporium acremonium (cIPNS) involves a catalytically important non-heme iron which is coordinated credibly to histidine residues. A comparison of the IPNS genes from various microbial sources indicated that there are seven conserved histidine residues. These were individually replaced by leucine residues through site-directed mutagenesis, and the sites of mutation were confirmed by DNA sequencing. The seven mutant genes were cloned separately into the vector pET24d for expression in Escherichia coli BL21 (DE3), and the proteins were expressed as soluble enzymes. All the resulting mutant enzymes obtained have mobilities of approximately 38 kDa, identical with the wild-type enzyme on SDS-polyacrylamide gel electrophoresis, and were also reactive to cIPNS antibodies. The enzymes were purified by ammonium sulfate precipitation and DEAE-Sephadex A-50 ion exchange chromatography, and these were analyzed for enzyme activity. A group of mutant enzymes, H49L, H64L, H116L, H126L, and H137L, were found to be enzymatically active with reduced activities of 16-93.7%, indicating that they are not essential for catalysis. Two of the mutant enzymes, H216L and H272L, were found to have lost their enzymatic activity completely, indicating that both His-216 and His-272 are crucial for catalysis. It is suggested that these histidines are likely to serve as ligands for binding to the non-heme iron in the IPNS active site. Alignment of the amino acid sequence of IPNS to related non-heme Fe(2+)-requiring enzymes indicated that the two essential histidine residues correspond to two invariant residues located in highly homologous regions. The conservation of the two closely located histidine residues indicates the possible conservation of similar iron-binding sites in these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号