首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Previous work has shown that cysteine-string proteins (csps) are synaptic vesicle proteins that are important for evoked neurotransmitter release at Drosophila neuromuscular junctions. Indirect evidence has implicated csps in a regulatory link between synaptic vesicles and presynaptic calcium (Ca) channels. In this report, we use Ca Crimson to monitor stimulus-dependent changes of cytosolic Ca at motor nerve terminals of csp mutant Drosophila. These mutants display temperature-sensitive (TS) paralysis and a presynaptic failure of evoked synaptic transmission. We show that this TS inhibition of neuromuscular transmission is correlated with a block of Ca ion entry at nerve endings of csp mutants. These data support the hypothesis that csps mediate a regulatory interaction between synaptic vesicles and presynaptic Ca channels. Moreover, these results predict that if one depletes nerve endings of synaptic vesicles, one may see a reduction of presynaptic Ca ion entry. Defects of the dynamin gene in TS shibire mutant Drosophila interfere with synaptic vesicle recycling and lead to an activity-dependent depletion of these organelles. Our results show that Ca influx is blocked at nerve terminals of shibire mutant larvae at the same time that synaptic transmission fails in these organisms. Thus, using two completely independent Drosophila mutants, we demonstrate that synaptic vesicles and csps are vital for the function of presynaptic Ca channels.  相似文献   

2.
The effect of 2-, and 4-aminopyridine (4-APYR) on the release mechanism of acetylcholine (ACh) from the nerve terminals of the Auerbach plexus-longitudinal muscle preparation of the guinea-pig ileum, suspended in eserinized Krebs' solution, was investigated. 2- and 4-APYR increased the release of ACh from the nerve terminals at rest and at both low and high frequency stimulation. The enhanced ACh release was found to be due to increased volley output. At lower frequency of stimulation, potentiation of ACh release was much higher than at higher rate of stimulation. 4-APYR was able to increase ACh release in the absence of [Ca2+]o. However, when a Ca-chelating agent, EDTA, was also added to the Ca-free Krebs' solution, 4-APYR was entirely ineffective. The depression of ACh release induced by Mg-excess was completely antagonized by 4-APYR. Tetrodotoxin (TTX) prevented augmentation of ACh release by 4-APYR. It is suggested that 4-APYR lowers the demand of nerve terminals for [Ca2+]o required for the excitation-secretion coupling process. The presence of a low concentration [Ca2+]o, however, is essential for the action of 4-APYR.  相似文献   

3.
Action mechanisms of the contractile agents, K ACh and Ba and of the antispasmodics, Cd and Mn were investigated. The contractions by K,ACh and Ba are exponential in shape, but consisted of phasic contraction (PC) and the subsequent tonic contraction (TC). PC by K and ACh are inititated by the release and the passive influx of Ca, whereas the PC by BA is due to the release of Ca. On the other hand, TC by these three agents is maintained by the active influx of Ca requiring energy. Since only the contraction by Ba remains constant in Ca(-) bath solution, it is assumed that the direct stimulation to muscle contractile elements without the mediation of Ca mobilization is also partly related to the contracting mechanism of Ba. Storage sites of Ca in the cell membrane of this preparation are distinguished into three divisions, the first, the second and the third, which contains loosely-, less lossely-, and tightly-bound Ca, respectively. K releases Ca to elicit contraction from the first divisions, ACh does so from the first and the second divisions, and Ba does so from all of the three divisions. The following assumption was obtained on the antispasmodic action of Cd and Mn, on the basis of the influence of Ca removed from bath solution and of addition of high K to bath solution and the analysis with concentration-action curves. The antispasmodic mechanism Cd and Mn is due to inhibition of cell membrane (competitive inhibition of influx and then release of Ca and subsequently competitive and non-competitive inhibition of influx and release of Ca) followed by the non-competitive inhibition of muscle contractile system, with the increase of dosage.  相似文献   

4.
1. Acetylcholine synthesis and release were studied in rabbit retinas isolated from the eye and incubated under conditions in which their electrophysiological function is maintained. ACh synthesized from exogenous [14C] choline appeared in the retina at an initial rate of 16 nmol/g wet wt-h. Incorporation of labeled choline into ACh was accelerated by stimulation of the retina with light. 2. Retinas incubated for 40 min in the presence of labeled choline and then superfused with a medium containing an anticholinesterase released radioactive ACh into the perfusate. The rate of release increased approximately fourfold during stimulation with light. 3. When retinas were incubated with labeled choline and then superfused with medium containing no pharmacological agents, stimulation with light caused an increased release of choline into the perfusate. The recovery of labeled choline following stimulation was enhanced by hemicholinium 3. 4. Neither the light-induced release of ACh (in perfusate containing anticholinesterase) nor the light-induced release of choline (in perfusate containing no anticholinesterase) occurred if the perfusate contained 20 mM Mg2+ and 0.2 mM Ca2+. 5. Synthesis of ACh by the retina at a high rate, acceleration of choline incorporation by stimulation, and Ca2+-dependent release of ACh by stimulation are each presumptive evidence that the retina contains a cholinergic synapse. If this presumption is correct, one such synapse may be of an amacrine or bipolar cell since these cells can depolarize during illumination, whereas the predominant response of receptor and horizontal cells is hyperpolarization.  相似文献   

5.
The effects of leptazol and bicuculline on the efflux of endogenous acetylcholine (ACh) from the surface of the cerebral cortex have been related to EEG activity in urethane-anaesthetised rats. During seizure activity there was a calcium dependent increase in ACh efflux which was related to increase EEG activity and clonic muscle movements. ACh release and EEG activity were reduced during convulsive activity by trimethadione but not phenytoin. Phenobarbitone reduced convulsive EEG activity but left ACh release relatively unaffected. Blood pressure changes induced by convulsant and anticonvulsant drugs were not consistently related to EEG activity or ACh release. It is suggested that ACh efflux from the cerebral cortex is closely related to the activity of neurones within the cortex where it is released from nerve endings. Comparison of EEG changes induced by anticonvulsants and urethane during control and convulsant activity showed that only trimethadione produces anticonvulsant activity unaccompanied by general CNS depression.  相似文献   

6.
Conventional electrophysiological techniques were used to study the effects of Ba on the release of acetylcholine (ACh) from frog motor nerve terminals. Equimolar substitution of Ba for Ca eliminated end-plate potentials (e.p.ps) without a corresponding decline in the amplitude of the nerve terminal action potential. Miniature end-plate potentials (m.e.p.ps) were readily detectable in Ba solutions despite a depolarized muscle membrane. Studies on the e.p.p. in curarized preparations bathed with different concentrations of Ca and Ba suggest that Ba may compete with Ca in the process by which depolarization of the nerve terminal leads to the release of ACh. Repetitive nerve stimulation at 1 Hz in Ba solutions caused 5-20 fold increases in m.e.p.p. frequencies (7 experiments). Stimulation of Ba-bathed preparations at 10 Hz elevated m.e.p.p. frequencies to very high levels that could not be measured accurately ('100/s). It is suggested that the asynchronous discharge of m.e.p.ps produced by repetitive nerve stimulation is the electrophysiological correlate of the evoked ACh outflow in Ba solutions detected previously by bioassay of ther perfusion fluid.  相似文献   

7.
Acetylcholine (ACh) and noradrenaline (NA) release in the olfactory bulb (OB) of ewes was monitored using microdialysis. Both ACh and NA release increased at parturition in multiparous but not in primiparous ewes. However, vaginocervical stimulation performed 6 hrs postpartum induced an increase of ACh and NA release in both primiparous and multiparous ewes, indicating that a maturation process had occurred. Finally, pharmacological challenges to the ACh and NA inputs revealed differential responsiveness between nulliparous and multiparous nongestant ewes. These results suggest that the 1st parturition induces changes in neural circuitry involving ACh and NA inputs to the OB. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

8.
Drugs administered to patients undergoing anaesthesia may complicate the use of the neuromuscular blockers that are given to provide good surgical conditions. The various sites of interaction include actions on motor nerve conduction and spinal reflexes, acetylcholine (ACh) synthesis, mobilisation and release, sensitivity of the motor end plate to ACh and the ease of propagation of the motor action potential. In addition, many drugs affect the pharmacokinetics of neuromuscular blockers, especially as most drugs depend to a greater or lesser extent upon renal excretion. The clinically significant interaction between nondepolarisers and depolarisers may be due to blockade of the pre-synaptic nicotinic receptors by the depolarisers, leading to decreased ACh mobilisation and release. Synergism between nondepolarisers probably results from post-synaptic receptor mechanisms. Volatile anaesthetic agents affect the sensitivity of the motor end-plate (post-synaptic receptor blockade) in addition to having effects on pre-synaptic nicotinic function. The effects of nondepolarisers are likely to be potentiated and their action prolonged by large doses of local anaesthetics due to depression of nerve conduction, depression of ACh formation, mobilisation and release, decreases in post-synaptic receptor channel opening times and reductions in muscular contraction. Most antibacterials have effects on pre-synaptic mechanisms. Procainamide and quinidine principally block nicotinic receptor channels. Magnesium has a marked inhibitory effect on ACh release. Calcium antagonists could theoretically interfere with neurotransmitter release and muscle contractility. Phenytoin and lithium decrease ACh release, whilst corticosteroids and furosemide (frusemide) tend to increase the release of the transmitter. Ecothiopate, tacrine, organophosphates, propanidid, metoclopramide and bambuterol depress cholinesterase activity and prolong the duration of the neuromuscular block. The probability of clinically significant interactions increases in patients receiving several drugs with possible effects on neuromuscular transmission and muscle contraction.  相似文献   

9.
1. The goal of this study was to characterize the functional properties of spinal interneurons that are excited by muscular free nerve endings and to assess their contributions to the clasp-knife reflex. 2. The patterns of activity of 82 spinal interneurons that were excited by squeezing the Achilles tendon or manipulation of the muscle surfaces, preferential stimuli for muscular free nerve endings, were extracellularly recorded in lamina V-VII of the L5-S1 spinal cord in decerebrated and spinalized cats. 3. Interneurons were uniformly excited by increases in muscular length and force. Responses to muscle stretch exhibited gradual decay during maintained stretch, afterdischarge after stretch release, and adaptation to repeated stretch. Responses to isometric contraction induced by electrical stimulation of motor axons was also prolonged after contraction, but did not decay during maintained contraction. For similar increases in force, stretch evoked greater excitation than contraction, indicating that both stretch and contraction contributed to interneuronal activity. Overall, the time course and magnitude of the interneuronal responses to stretch and contraction paralleled the time course and magnitude of the clasp-knife reflex. 4. Interneurons were powerfully excited by muscular free nerve endings, which mediate the clasp-knife reflex, and by cutaneous receptors. Only occasionally were they excited by primary spindle or Golgi tendon organ afferents, which suggests that activation of muscular free nerve endings mediated the interneuronal responses to stretch and contraction. 5. Simultaneous recordings of interneuronal activity and the clasp-knife reflex revealed a broad correlation between interneuronal activity and clasp-knife inhibition. 6. Because the patterns of activity of free nerve ending-responsive interneurons during stretch and contraction were similar to the clasp-knife reflex, were closely correlated with clasp-knife inhibition during simultaneous interneuronal and reflex recordings, and were powerfully excited by muscular free nerve endings, it is likely that the interneurons described above contributed to the clasp-knife reflex. 7. In contrast, a small number (n = 16) of interneurons were recorded that were only weakly excited by muscular free nerve endings but strongly excited by group I afferents, exhibited less spontaneous and evoked activity, and had significantly different responses to stretch and contraction. These interneurons are less likely to have contributed to the clasp-knife reflex.  相似文献   

10.
Arachidonic acid and oleoylacetylglycerol enhance depolarization-evoked glutamate release from hippocampal mossy fiber nerve endings. It was proposed this is a Ca(2+)-dependent effect and that protein kinase C is involved. Here we report that arachidonic acid and oleoylacetylglycerol synergistically potentiate the glutamate release induced by the Ca2+ ionophore ionomycin. The Ca2+ dependence of this effect was established, as removal of Ca2+ eliminated evoked release and the lipid-dependent potentiation. Also, Ca2+ channel blockers attenuated ionomycin- and KCl-evoked exocytosis, as well as the facilitating effects of the lipid mediators. Although facilitation required Ca2+, it may not involve an enhancement of evoked Ca2+ accumulation, because ionomycin-dependent glutamate release was potentiated under conditions that did not increase ionomycin-induced Ca2+ accumulation. Also, the facilitation may not depend on inhibition of K+ efflux, because enhanced release was observed in the presence of increasing concentrations of 4-aminopyridine and diazoxide did not reduce the lipid-dependent potentiation of exocytosis. In contrast, disruption of cytoskeleton organization with cytochalasin D occluded the lipid-dependent facilitations of both KCl- and ionomycin-evoked glutamate release. In addition, arachidonic acid plus glutamatergic or cholinergic agonists enhanced glutamate release, whereas a role for protein kinase C in the potentiation of exocytosis was substantiated using kinase inhibitors. It appears that the lipid-dependent facilitation of glutamate release from mossy fiber nerve endings requires Ca2+ and involves multiple presynaptic effects, some of which depend on protein kinase C.  相似文献   

11.
We measured the amount of acetylcholine (ACh) released from rabbit detrusor smooth muscles induced by electrical field stimulation (EFS) using microdialysis procedure. The dialysis probe was inserted through the detrusor muscle strip and was continuously perfused with a Ringer solution containing physostigmine sulfate, at a rate of 2 microl/min. The strip was suspended in an organ bath filled with the modified Krebs-Henseleit solution and then EFS was delivered. The isometric force was recorded and monitored in each muscle preparation. The dialysates were collected every 10 min. ACh was determined by a high performance liquid chromatography with electro-chemical detection. The contraction of the muscle strip and ACh release induced by EFS were increased in a frequency and duration dependent manner. There were some differences between frequency response curves of contraction and frequency dependent ACh release. In the contractile response, the maximum contractions were observed at lower frequencies, while ACh releases reached the maximum at higher frequencies. There was a significant, but not simple correlation between EFS-induced contraction and ACh release. The results suggest that this new method is useful to investigate the ACh release from rabbit detrusor smooth muscles, and that other neurotransmitters than ACh possibly contribute to EFS-induced contraction.  相似文献   

12.
1. Previous studies have provided evidence that activation of beta-adrenoceptors on cholinergic nerve terminals can inhibit neurotransmission in the airways. However, in most cases, this conclusion has been based on indirect evidence obtained from mechanical experiments where changes in airways smooth muscle tone were measured. 2. We have assessed whether modulation of cholinergic neurotransmission by beta-adrenoceptor agonists is due to a pre- or post-junctional action by investigating the effect of isoprenaline on contractile responses evoked by exogenous acetylcholine (ACh) and electrical field stimulation (EFS; 4 Hz, 40 V, 0.5 ms pulse width every 15 s), and on EFS-induced ACh release from cholinergic nerves innervating guinea-pig and human trachea. Furthermore, the subtype of beta-adrenoceptor which modulates neurotransmission and the potential role of cyclic AMP in this response were evaluated. 3. In guinea-pig trachea, isoprenaline (1 nM-1 microM) inhibited the contractile response evoked by exogenous ACh (1 microM) to a similar extent to that evoked by EFS (EC50 = 19.9 and 23 nM, respectively). 4. In epithelium-denuded guinea-pig strips treated with indomethacin (10 microM), isoprenaline significantly enhanced EFS-induced ACh release from cholinergic nerve terminals (by 36% at 0.3 microM). This effect was blocked by propranolol and ICI 118, 551 (each 0.1 microM). In contrast, isoprenaline failed to affect EFS-induced ACh release from parasympathetic nerves innervating human trachea. 5. To evaluate the role of cyclic AMP in the beta-adrenoceptor-induced facilitation of cholinergic neurotransmission, the effects of various cyclic AMP elevating drugs on ACh release were studied. Forskolin (10 microM) significantly augmented (by 17%) EFS-induced ACh release, an effect which was not reproduced by 1,9-dideoxyforskolin (10 microM) which does not activate adenylyl cyclase. Similarly, the cyclic AMP analogue, 8-bromo-cyclic AMP (1 mM) and cholera toxin (1 microgram ml-1) facilitated ACh output by 22 and 47% respectively, whereas prostaglandin E2 (PGE2, 0.1 nM-1 microM) inhibited this response (by 67% at 1 microM). 6. Zardaverine (10 microM), a dual inhibitor of the phosphodiesterase (PDE)3 and PDE4 isoenzyme families, did not affect EFS-induced ACh release and failed to facilitate the actions of either isoprenaline or PGE2. Similarly, neither SK&F 94120 (10 microM) nor rolipram (10 microM), selective inhibitors of PDE3 and PDE4 respectively, significantly affected the release of ACh in response to EFS. 7. The result of this study suggests that isoprenaline facilitates cholinergic neurotransmission in guinea-pig, but not human, trachea by activation of pre-junctional beta 2-adrenoceptors, an effect that may be mediated via activation of the cyclic AMP/cyclic AMP-dependent protein kinase cascade. Furthermore, the data presented herein illustrate the need to undertake direct measurements of neurotransmitter release when examining the effect of agents purported to act pre-junctionally.  相似文献   

13.
Experiments were designed to assess the mode of action of nitroprusside on isolated blood vessels and its relative potency on venous and arterial smooth muscle. Strips from dog blood vessels were mounted in an organ bath for isometric tension recording. Sodium nitroprusside (10(-5) M) depressed the contraction of saphenous vein strips caused by electric stimulation, tyramine, K+, Ba++, norepinephrine and acetylcholine. The depression of the norepinephrine-induced contractions also occurred in a Ca++- free medium and when Ca++ influx was inhibited by verapamil. Nitroprusside reduced the frequency of the spontaneous contractions of strips of portal-mesenteric veins. It depressed the contraction caused by norepinephrine in tibial artery strips more than in saphenous vein strips. Saphenous vein strips were incubated with (3H)norepinephrine and mounted for superfusion and isometric tension recording. Sodium nitroprusside (10(-5) M) had no effect on the basal efflux of 3H compounds. During electric stimulation, it did not change the output of (3H)norepinephrine but increased the outflow of deaminated and O-methylated metabolites. Thus sodium nitroprusside 1) has a direct effect on the smooth muscle cells which is independent of Ca++ influx, 2) depresses contractions of different types of vascular smooth muscle and 3) does not inhibit the release of norepinephrine from the nerve endings.  相似文献   

14.
To elucidate the role of aspartate as a signal molecule in the brain, its localization and those of related amino acids were examined by light and electron microscopic quantitative immunocytochemistry using antibodies specifically recognizing the aldehyde-fixed amino acids. Rat hippocampal slices were incubated at physiological and depolarizing [K+] before glutaraldehyde fixation. At normal [K+], aspartate-like and glutamate-like immunoreactivities were colocalized in nerve terminals forming asymmetrical synapses on spines in stratum radiatum of CA1 and the inner molecular layer of fascia dentata (i.e., excitatory afferents from CA3 and hilus, respectively). During K+ depolarization there was a loss of aspartate and glutamate from these terminals. Simultaneously the immunoreactivities strongly increased in glial cells. These changes were Ca2+-dependent and tetanus toxin-sensitive and did not comprise taurine-like immunoreactivity. Adding glutamine at CSF concentration prevented the loss of aspartate and glutamate and revealed an enhancement of aspartate in the terminals at moderate depolarization. In hippocampi from animals perfused with glutaraldehyde during insulin-induced hypoglycemia (to combine a strong aspartate signal with good ultrastructure) aspartate was colocalized with glutamate in excitatory terminals in stratum radiatum of CA1. The synaptic vesicle-to-cytoplasmic matrix ratios of immunogold particle density were similar for aspartate and glutamate, significantly higher than those observed for glutamine or taurine. Similar results were obtained in normoglycemic animals, although the nerve terminal contents of aspartate were lower. The results indicate that aspartate can be concentrated in synaptic vesicles and subject to sustained exocytotic release from the same nerve endings that contain and release glutamate.  相似文献   

15.
The aziridinium ion of ethylcholine (AF64A), a cholinergic neurotoxin, was injected into the right striatum of a rat. The unilateral injection of 10 nmol AF64A reduced the activity of choline acetyltransferase (CAT) and the tissue content of acetylcholine (ACh) in the striatum. The striatal contents of dopamine (DA), norepinephrine (NE), 5-hydroxyindoleacetic acid (5-HIAA) and gamma-aminobutyric acid (GABA) were unchanged. These results suggest that the cholinospecificity in the striatal lesion was induced by the 10 nmol dose of AF64A. The number of N-methyl-D-aspartic acid (NMDA) receptors in the striatum treated with 10 nmol AF64A was determined by a specific binding assay using [3H](+/-)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid ([3H]CPP), a selective ligand for NMDA receptors. The number of the NMDA receptors decreased significantly in the injected area. On the other hand, in a microdialysis using normal rats, the perfusion of 50 microM NMDA into the striatum increased ACh release. The perfusion of 100 microM MK801 which is the specific and non-competitive NMDA receptor antagonist, decreased the basal levels of ACh release and blocked NMDA-elicited ACh release. Taken together, the present results strongly suggest that a population of NMDA receptors exists on cholinergic interneurons within the striatum, and it directly regulates ACh release.  相似文献   

16.
Giant liposomes were made from a mixture of asolectin phospholipid vesicles and presynaptic plasma membranes isolated from Torpedo cholinergic nerve endings. Acetylcholine filled giant liposomes were able to release neurotransmitter upon stimulation by the Ca2+ ionophore A23187 and Ca2+. Botulinum neurotoxin type A inhibited this Ca(2+)-dependent acetylcholine transport. Additionally, Botulinum toxin type A decreased membrane fluidity of liposomes. These results suggest that Botulinum toxin can interact directly with components of the presynaptic plasma membrane and inhibit acetylcholine translocation. Furthermore, since the reconstituted liposomes do not have synaptic vesicle components, the observed effects may account for the action of Botulinum toxin on the non-quantal release of acetylcholine from motor nerve terminals.  相似文献   

17.
Rat cortex synaptosomes have been successfully perforated with high concentrations (> or = 400 U/ml) of Staphylococcus aureus alpha-toxin. The free Ca2+-concentration dependence of [3H]-noradrenaline release was similar to that observed for PC 12 and chromaffin cells. Release from the alpha-toxin perforated synaptosomes was not significantly inhibited by omega-conotoxin GVIA. Initially, Ca2+-dependent release was independent of MgATP (for 0.5 min), but became increasingly dependent on MgATP with time. Lactate dehydrogenase efflux from alpha-toxin-perforated synaptosomes was not different than efflux from control synaptosomes, and an antibody to N-ethylmaleimide-sensitive fusion protein did not enter the synaptosomes. [3H]-noradrenaline release was temperature and alpha-toxin-concentration dependent. Ca2-dependent release was more resistant to rundown from alpha-toxin- than from streptolysin-O-perforated synaptosomes. This preparation of perforated synaptosomes should be useful for studies of regulated exocytosis from nerve endings.  相似文献   

18.
OBJECTIVE: To determine the effect of in vivo antigen sensitization (Ascaris suum) of cats on tracheal smooth muscle (TSM) and bronchial smooth muscle (BSM) muscarinic reactivity in vitro. ANIMALS: Healthy domestic shorthair cats of either sex. PROCEDURE: Cats were sensitized and were long-term antigen (or sham) challenge exposed for 6 weeks by aerosolization with soluble Ascaris suum. Tracheal and BSM preparations were obtained and stimulated in vitro by electrical field stimulation (EFS), acetylcholine (ACh, a muscarinic agonist), and physostigmine (an AChase inhibitor). Responses were compared with responses of comparable tissues from sham antigen challenge-exposed cats. RESULTS: Tracheal and BSM from sensitized, compared with sham-sensitized (control), cats had greater isometric contraction (expressed as percentage of the response observed for isotonic, 63 mM KCl-elicited contraction [% KCl]) in response to endogenous (EFS) and exogenous muscarinic receptor activation (ACh). Contractions in response to EFS by TSM from control cats were 74% KCl vs 97% KCl for antigen-sensitized TSM (P < 0.04). Muscarinic responses were augmented comparably by in vivo sensitization; TSM from control cats contracted to 190% KCl vs 230% KCl (P < 0.03) for TSM from immune-sensitized cats. Physostigmine augmented responses of all tissues to ACh so that TSM from control (290% KCl) and antigen-sensitized (257% KCl) cats were similar. Responses of BSM from antigen-sensitized cats had similar augmentation of contractile response to EFS and ACh. CONCLUSIONS: Long-term in vivo antigen sensitization increases numbers of muscarinic receptors on airway smooth muscle or decreases the availability or activity of AChase in cats. CLINICAL RELEVANCE: Modulation of muscarinic receptors may be useful for treatment of asthmatic cats with in vivo airway hyperreactivity.  相似文献   

19.
The effect of 7-nitroindazole (7-NI), an inhibitor of neuronal nitric oxide synthase (nNOS) on the dimethylphenylpiperazinium(DMPP)-evoked release of [3H]noradrenaline ([3H]NA) from rat hippocampal slices was studied. The effect of DMPP (20 microM) to increase the basal release of [3H]NA was significantly potentiated by 7-NI (40 microM). In our previous study we showed that the response to DMPP has two components, a nicotinic receptor-mediated, [Ca2+]-dependent exocytosis followed by a [Ca2+]-independent, uptake blocker-sensitive carrier-mediated release. To clarify which part of the response was affected by the inhibition of nNOS, we investigated the effect of 7-NI on the nicotine-evoked NA release (nicotine has only receptor-mediated effect) and on the DMPP-evoked NA release in Ca(2+)-free medium where the receptor-mediated component is abolished. Nicotine (100 microM) significantly increased the basal release of [3H]NA but this release was not affected, whereas in Ca(2+)-free medium the response to DMPP (20 microM) was still potentiated by 7-NI (40 microM). In the presence of the NA uptake blocker desipramine (10 microM) DMPP (20 microM) was unable to provoke NA release independently from the presence or absence of 7-NI (40 microM). Our data show that 7-NI influences the carrier-mediated component of DMPP-evoked [3H]NA release, which indicates that nitric oxide produced by nNOS may play a role in the regulation of the NA uptake carrier.  相似文献   

20.
BACKGROUND: Botulinum toxin A is a potent inhibitor of the release of acetylcholine from nerve endings. Local injection of botulinum toxin has recently been suggested to be helpful in sphincter of Oddi dyskinesia by decreasing sphincter of Oddi pressure. AIMS: To explore the mechanism of action of botulinum toxin A on sphincter of Oddi (SO) muscle. METHODS: Four piglets underwent duodenoscopy and SO manometry was performed. After obtaining a baseline pressure, the SO was injected with normal saline and the experiment repeated after one week. The SO was then injected endoscopically with botulinum toxin (40 U) with follow up manometry one week later. The sphincter of Oddi was removed from 10 pigs, cut into three rings, and placed in an organ bath. The force of contraction was measured and registered on a polygraph. Rings were stimulated by 70 V (10 Hz, 0.5 ms) electrical field stimulation for 20 seconds, exogenous acetylcholine (100 microM), and KCl (125 mM). Botulinum toxin (0.1 U/ml) or atropine (1 microM) was added to the incubation medium and the stimulation was repeated. RESULTS: Mean basal SO pressure in the pigs remained unchanged after saline injection but decreased to about 50% of baseline value following botulinum toxin injection (p = 0.04). The contractions induced by direct stimulation of SO smooth muscle with KCl were not significantly affected by either atropine or botulinum toxin. In all rings exogenous acetylcholine induced contractions, which were totally blocked by atropine, but not by botulinum toxin. Electrical field stimulation induced contractions that were inhibited by both atropine and botulinum toxin. CONCLUSION: Botulinum toxin inhibits pig sphincter of Oddi smooth muscle contractions by a presynaptic cholinergic mechanism, similar to that described in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号