首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spin polarized density functional theory is used to investigate the incorporation of hydrogen adatoms and the interaction between molecular H2 with antisites and vacancies in both zigzag (4,0) and armchair (3,3) BC2N nanotubes. We find that the presence of antisites and vacancies increases the binding energy of hydrogen adatoms on the tube surface. In the most stable antisites (CB, CN, NCI and BCII), the hydrogen adatoms bind preferentially on carbon atoms of the defective site (CB, and CN) or closer to it (NCI and BCII). For a single adsorbed H, the calculated binding energies show that the H adsorption on a carbon vacancy (VCII) is the most stable site with a binding energy of ?4.23?eV. The adsorption of a second H atom near the previous one is an exothermic process compared to of a single H2 molecule physisorbed on the nanotube surface.  相似文献   

2.
Carbon single-wall nanotubes (SWNTs) were loaded with 5.4 wt.% H by exposing to a hydrogen pressure of 50 kbar at 500°C. Investigation of the optical transmission spectra showed that the hydrogenation significantly suppressed the high-frequency conductivity σ of free carries in the SWNTs and also eliminated the band-to-band electronic transitions. Instead, a narrow line of the C-H stretching vibrational mode appeared at 2845 cm-1. A gradual removal of hydrogen from the hydrogenated SWNTs by vacuum annealing at T≥500°C resulted in an approximately linear decrease in the intensity of this line with decreasing hydrogen content. This evidenced that most H atoms in the hydrogenated SWNTs were covalently bonded to the carbon atoms. The complete removal of hydrogen by vacuum annealing at 700°C partly restored σ and the intensity of the electronic transitions characteristic of the initial SWNTs.  相似文献   

3.
Hydrogen storage in carbon nanotubes: a multi-scale theoretical study   总被引:1,自引:0,他引:1  
A Combination of quantum and classical calculations has been performed to investigate the hydrogen storage in single-walled carbon nanotubes (SWNTs). The ab-initio calculations at the Density Functional level of Theory (DFT) show the nature of hydrogen interaction in selected sites of a (5,5) tube walls. On top of this, Molecular Dynamics simulations model large scale nanotube systems and reproduce the storage capacity under variant temperature conditions. Our results indicate that the interaction of hydrogen with SWNTs is very weak and slightly increase of temperature, causes hydrogen diffusion from the tube walls.  相似文献   

4.
Palladium is usually supported on porous materials in the form of nanoparticles. The hydrogen storage capacity of such a system is usually much higher than the separated capacity of the metal (approximately 0.7 H/Pd) and the support. Pd nanoparticles provide a source of hydrogen atoms by dissociation. The atomic hydrogen spills over from the Pd structure to the support via surface diffusion and this phenomenon is known as hydrogen spillover. In this study commercial SWNTs were dispersed in PEG 200 solution. Then the precursor PdCl2 in PEG 200 was added and the whole left to react under stirring with reflux at 200 degrees C for 1 h. Succeeding washings with ethanol and centrifugation followed for several times and finally the sample was dried at 60 degrees C. Through this procedure a 3 wt% Pd loading was achieved whereas the TEM derived nanoparticle size distribution indicated a 50% percentage of Pd nanoparticles with diameter less than 8 nm. Hydrogen isotherms up to 2 MPa were carried out with the gravimetric method. The defined storage capacity of 1.2 wt% at 0.2 MPa was quite satisfactory. However, a 0.2 wt% portion of this storage capacity was attributed to the formation of water molecules through reaction of H atoms with the dissociatively adsorbed oxygen atoms on the Pd nanoparticles. This conclusion was educed from a series of thermal desorption experiments following the H2 adsorption/desorption cycles and regeneration. Through this set of experiments several other important parameters were defined as the temperature for complete hydrogen desorption and the optimum conditions for PEG removal.  相似文献   

5.
A three-dimensional kinetic Monte Carlo technique has been developed for simulating the nucleation and growth of thin films. The model involves incident atom attachment, surface diffusion of the atoms on the growing surface and atom detachment from the growing surface. Related effects caused by atom diffusion were taken into account. A significant improvement in calculation of activation energy for the atom diffusion was made based on a reasonable assumption of interaction potential between atoms. Trace files were created during the simulation and snapshots showing the morphology of the nucleation and growth of the thin films were taken by computer graph technique. The results showed that the density of the nucleus decreases and the size of island nucleation increases with increasing the substrate temperature and decreasing the deposition rate. At the meantime, a transition from two-dimension to three-dimension nucleation was observed. There exist three critical temperatures at a certain deposition rate: Tn at which the nucleation rate reaches maximum, Tr at which the surface roughness minimizes and Td at which the relative film density saturates. The three critical temperatures are functions of the deposition rate. The nucleation rate is close to constant under lower temperatures while it increases with deposition rate at higher temperatures. The film surface roughness depends on the density of island nucleation, it increases with temperature at lower temperatures and decreases at higher temperatures. The relative film density decreases with increasing the deposition rate.  相似文献   

6.
Among the carbon allotropes, carbyne chains appear outstandingly accessible for sorption and very light. Hydrogen adsorption on calcium-decorated carbyne chain was studied using ab initio density functional calculations. The estimation of surface area of carbyne gives the value four times larger than that of graphene, which makes carbyne attractive as a storage scaffold medium. Furthermore, calculations show that a Ca-decorated carbyne can adsorb up to 6 H(2) molecules per Ca atom with a binding energy of ~0.2 eV, desirable for reversible storage, and the hydrogen storage capacity can exceed ~8 wt %. Unlike recently reported transition metal-decorated carbon nanostructures, which suffer from the metal clustering diminishing the storage capacity, the clustering of Ca atoms on carbyne is energetically unfavorable. Thermodynamics of adsorption of H(2) molecules on the Ca atom was also investigated using equilibrium grand partition function.  相似文献   

7.
Protective-layer-coated single-walled carbon nanotubes (SWNTs) with palladium nanoparticle decoration (Pd-SiO(2)-SWNTs) were fabricated and their sensing properties for hydrogen (H(2)) were investigated. SWNTs were coated with a 3-4?nm thick SiO(2) layer by pulsed laser deposition and subsequently decorated with Pd nanoparticles by electron beam evaporation. Even though the SWNTs were completely surrounded by a protective layer, Pd-SiO(2)-SWNTs responded to H(2) down to a concentration of 1 part per million. Compared with the Pd nanoparticle-decorated SWNTs without a protective layer (Pd-SWNTs), Pd-SiO(2)-SWNTs exhibited highly stable sensor responses with variations of less than 20%; Pd-SWNTs showed a variation of 80%. The density of the Pd-SWNTs significantly decreased after the sensing test, while that of the Pd-SiO(2)-SWNTs with the netlike structure remained unchanged. The hydrogen sensing mechanism of the Pd-SiO(2)-SWNTs was attributed to the chemical gating effect on the SWNTs due to dipole layer formation by hydrogen atoms trapped at the Pd-SiO(2) interface. Moreover, the relationship between H(2) concentration and sensor response can be described by the Langmuir isotherm for dissociative adsorption.  相似文献   

8.
Chemical reactions between hydrogen terminated Si(001)2 x 1 surface and impinging H radical are investigated by means of first-principles molecular-dynamics simulations. Reaction probabilities of abstraction of surface terminating H atom with H2 formation, adsorption onto Si surface and reflection of impinging H atom are analyzed with respect to the kinetic energy of incident H radical. The probabilities of abstraction and adsorption turn out to be ranging from 0.81 to 0.58 and from 0.19 to 0.42, respectively, while that of reflection almost zero. As initial kinetic energy of the impinging atom increases, the reaction probability of abstraction decreases and that of absorption increases. Metastable H-absorbed atomic configurations are also derived by optimizing the structures obtained in the impinging dynamics calculations. They are candidates of the so-called reservoir site which is a key to understand the unity hydrogen coverage observed after an exposure to gaseous H atom ambient despite existing residual vacant sites due to abstraction.  相似文献   

9.
Using first-principles calculations, we study the doping of alkali atoms on the outer surface of 4 angstroms single-walled carbon nanotubes. It is found that the exterior doping at the "center" site is more favorable than the interior doping along tube axis. The calculated binding energies show a strong chirality dependence, and the alkali atoms tend to be bound strongest with the (5, 0) tube. The change of band structure upon doping is studied and the charge transfer between tube and alkali atom is shown. Our calculations indicate that the Li storage capacity can be reached to a maximum of LiC2.5, which suggests that the 4 angstroms nanotube could be a plausible candidate for Li-ion battery applications.  相似文献   

10.
A continuous and wide range control of the diameter (1.9?3.2 nm) and density (0.03?0.11 g cm?3) of single‐walled carbon nanotube (SWNT) forests is demonstrated by decoupling the catalyst formation and SWNT growth processes. Specifically, by managing the catalyst formation temperature and H2 exposure, the redistribution of the Fe catalyst thin film into nanoparticles is controlled while a fixed growth condition preserved the growth yield. The diameter and density are inversely correlated, where low/high density forests would consist of large/small diameter SWNTs, which is proposed as a general rule for the structural control of SWNT forests. The catalyst formation process is modeled by considering the competing processes, Ostwald ripening, and subsurface diffusion, where the dominant mechanism is found to be Ostwald ripening. Specifically, H2 exposure increases catalyst surface energy and decreases diameter, while increased temperature leads to increased diffusion on the surface and an increase in diameter.  相似文献   

11.
Peifeng Zhang 《Vacuum》2004,72(4):405-410
A three-dimensional kinetic Monte Carlo technique has been developed for simulating the growth of thin Cu films. The model involves incident atom attachment, surface diffusion of the atoms on the growing surface and atom detachment from the growing surface. A significant improvement in calculation of activation barriers for the surface atom diffusion on the growing film was made. The related effects caused by surface atom diffusion were taken into account. The results showed that there exist a transition temperature Tt at a certain deposition rate. When the substrate temperature approaches Tt, the growing surface becomes smoother and the relative density of the films increases. The surface roughness minimizes and the relative density saturates at Tt. The surface roughness increases with increased substrate temperature when the temperature is higher than Tt. Tt is a function of the deposition rate. The influence of the deposition rate on the surface roughness is dependent on the substrate temperature. The simulation results also showed that the relative density decreases with increasing deposition rate and average thickness of the film.  相似文献   

12.
Ultrahigh-vacuum (UHV) scanning tunneling microscopy (STM) can be used for the manipulation of individual atoms and molecules into complex arrangements for sensitive electrical and structural characterization. However, the systematic UHV STM manipulation of single-walled carbon nanotubes (SWNTs), high-aspect-ratio molecular wires derived from graphene that exist in both semiconducting and metallic forms, has yet to be reported. In this work, we demonstrate the room-temperature lateral manipulation of approximately 1-nm-diameter SWNTs on UHV-prepared, hydrogen-passivated Si(100) surfaces. We show the reproducible actuation of SWNTs having lengths as small as 13 nm, along with the partial division of a two-tube bundle. Moreover, UHV STM desorption of H at the SWNT/Si interface is introduced as a means of locally strengthening the interaction between the tube and the surface. The UHV STM manipulation scheme described here is potentially extensible to the orientational control of SWNTs interfaced with atomically clean semiconducting surfaces, such as InAs(110), GaAs(110), and unpassivated Si(100), for which first-principles calculations based on density functional theory have been reported recently in the literature.  相似文献   

13.
The influence of potassium (K) on the hydrogen (H) adsorption on graphene (G) was studied by means of density functional theory with the generalized gradient approximation. The structural parameters, bonding and magnetic properties of one and two H atoms interacting with potassium doped graphene (H–K/G and 2H–K/G) are calculated for different energetically stable configurations. We found a charge transfer from K atom towards G even when the H atom pairs are adsorbed. This behavior is obtained for all the configurations studied here. The binding energy per H atom is greater in the most stable 2H–K/G arrangement than in both H–K/G and H/G systems. The present results suggest that the hydrogen atom binding energy on graphene layer could increase up to 82% due to the pre-adsorption of potassium.  相似文献   

14.
Kim JJ  Lee BJ  Lee SH  Jeong GH 《Nanotechnology》2012,23(10):105607
The electronic, physical and optical properties of single-walled carbon nanotubes (SWNTs) are governed by their diameter and chirality, and thus much research has been focused on controlling the diameter and chirality of SWNTs. To date, control of the catalyst particle size has been thought to be one of the most promising approaches to control the diameter or chirality of SWNTs owing to the correlation between catalyst particle size and tube diameter.In this study, we demonstrate the size engineering of catalytic nanoparticles for the controlled growth of diameter-specified and horizontally aligned SWNTs on quartz substrates. Uniformly sized iron nanoparticles derived from ferritin molecules were used as a catalyst, and their size was intentionally decreased via thermal heat treatment at 900?°C under atmospheric Ar ambient. ST-cut quartz wafers were used as growth substrates in order to elucidate the effect of the size of the nanoparticles on the tube diameter and the effect of catalyst size on the degree of parallel alignment on the quartz substrates. SWNTs grown by chemical vapor deposition using methane as feedstock exhibited a high degree of horizontal alignment when the particle density was low enough to produce individual SWNTs without bundling. Annealing for 60?min at 900?°C produced a reduction of nanoparticle diameter from 2.6 to 1.8?nm and a decrease in the mean tube diameter from 1.2 to 0.8?nm, respectively. Raman spectroscopy results corroborated the observation that prolonged heat treatment of nanoparticles yields thinner tubes with narrower size distributions. The results of this work suggest that straightforward thermal annealing can be a facile way to obtain uniform-sized SWNTs as well as catalytic nanoparticles.  相似文献   

15.
We use molecular mechanics calculations to study size effects on mechanical properties of carbon nanotubes. Both single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs) are considered. The size-dependent Young's modulus decreases with the increasing tube diameter for a reactive empirical bond order (REBO) potential function. However, we observe a contrary trend if we use other potential functions such as the modified Morse potential function and the universal force field (UFF). Such confliction is only obtained for small tubes within cutoff diameters (3 nm for REBO and 1.5 nm for others). In light of these predictions, Young's moduli of large nanotubes concur with experimental results for all the potential functions. No matter which potential function is used, the Poisson's ratio decreases with the increasing tube diameter. We also study the chirality effects on mechanical properties of SWNTs. We find that the Young's moduli are insensitive to the chirality of nanotubes. The chirality effect on the Poisson's ratio is significant for the UFF but not the REBO or modified Morse potential functions.  相似文献   

16.
In this paper we focus on diamond film hot-filament chemical vapor deposition reactors where the only reactant is hydrogen so as to study the formation and transport of hydrogen atoms. Analysis of dimensionless numbers for heat and mass transfer reveals that thermal conduction and diffusion are the dominant mechanisms for gas-phase heat and mass transfer, respectively. A simplified model has been established to simulate gas-phase temperature and H concentration distributions between the filament and the substrate. Examination of the relative importance of homogeneous and heterogeneous production of H atoms indicates that filament-surface decomposition of molecular hydrogen is the dominant source of H and gas-phase reaction plays a negligible role. The filament-surface dissociation rates of H2 for various filament temperatures were calculated to match H-atom concentrations observed in the literature or derived from power consumption by filaments. Arrhenius plots of the filament-surface hydrogen dissociation rates suggest that dissociation of H2 at refractory filament surface is a catalytic process, which has a rather lower effective activation energy than homogeneous thermal dissociation. Atomic hydrogen, acting as an important heat transfer medium to heat the substrate, can freely diffuse from the filament to the substrate without recombination.  相似文献   

17.
Single=walled carbon nanotubes(SWNTs) were synthesized by a hydrogen arc discharge method.A high yield of gram quantity of SWNTs per hour was achieved.Tow kinds of SWNT products:web-like substancea and thin films in large slices were obtained. Results of resonant Raman scattering measurements indicate that the SWNTs prepared have a wider diameter distribution and a larger mean diameter.Hydrogen uptake measurements of the two kinds of SWNT samples(both as prepared and pretreated) were carried out using a high pressure volumetric method,respectively.And a hydrogen storage capacity of 4 wt pct could be repeatedly achieved for the suitably pretreated SWMNTs,whicb indicates that SWNTs may be a promising hydrogen storge material.  相似文献   

18.
采用超临界干燥法制备了活性高、比表面大的Fe/Mo/Al2O3催化剂.通过超临界干燥,催化剂的比表面由294m2/g提高到401m2/g.在1000℃下用该催化剂催化裂解甲烷, 合成了大产量、高质量的单壁纳米碳管(SWNTs).利用SEM、TEM、HRTEM、TGA 和Raman等手段对所制备的SWNTs进行了表征.结果表明:超临界法制备催化剂合成的粗产品中SWNTs含量在30%以上,大大高于同一配方催化剂采用常规干燥法的产率(约2%); SWNTs的管径分布在0.8-1.0nm之间,其形态以束状为主.  相似文献   

19.
In this work, first principles calculations have been performed to study the doping and distribution of Si atoms in TiC lattice. The results confirm that Si atoms prefer to occupy Ti sites and their segregation on the TiC crystal surface may occur. But in the presence of carbon vacancies on the surface, Si atoms tend to be chemically adsorbed around the vacancies rather than occupy the carbon sites. It is also shown that the diffusion of Si may be very difficult in stoichiometric TiC, in particular the diffusion from bulk to surface. However, the carbon vacancies can considerably decrease the energy barrier and enhance the diffusion of Si atoms.  相似文献   

20.
Jeon KJ  Jeun M  Lee E  Lee JM  Lee KI  von Allmen P  Lee W 《Nanotechnology》2008,19(49):495501
We present the hydrogen sensing performance of individual Pd nanowires grown by electrodeposition into nanochannels of anodized aluminum oxide (AAO) templates investigated as a function of the nanowire diameter. Four-terminal devices based on individual Pd nanowires were found to successfully detect hydrogen gas (H(2)). Our experimental results show that the H(2) sensing sensitivity increases and the response time decreases with decreasing diameter of Pd nanowires with d = 400, 200, 80 and 20?nm, due to the high surface-to-volume ratio and short diffusion paths, respectively. This is in qualitatively good agreement with simulated results obtained from a theoretical model based on a combination of the rate equation and diffusion equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号