首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用电化学阳极氧化法制备了高度有序的TiO2纳米管阵列,并利用纳米管的光致超亲水特性,采用斜面毛细组装技术在无定形TiO2表面自组装ZnO溶胶后退火制备了TiO2/ZnO复合纳米管.探讨了阳极氧化各参数对纳米管形貌的影响.利用X射线衍射仪(XRD)、场发射扫描电子显微镜(FE-SEM)等方法对样品的结构和形貌进行了表征.以有机磷农药氯胺磷为光催化降解对象,研究了焙烧温度、管径、管长和TiO2/ZnO复合比例等因素对降解效果的影响.结果表明,焙烧温度、管径以及ZnO复合比例对光催化降解率影响较大.对于管径97 nm、管长315.8nm的TiO2/ZnO纳米管,ZnO最佳复合比例为4.2%(质量分数),5 h后降解率达到78%.  相似文献   

2.
采用简单的电化学阳极氧化法在金属Ti表面制备了TiO2纳米管阵列薄膜,研究薄膜的表面形貌、晶相结构以及光吸收性质,考察其光电极的光电化学特性,结果表明,所制备的纳米管阵列膜结构高度有序,平均管径约90nm,管长约700nm。经过不同温度热处理后,薄膜结晶性质的重要性得到证实,600℃处理的光电极具有最优的光吸收和光电化学性质,最高光转化效率约1.07%。  相似文献   

3.
Synthesis of hematite (α-Fe(2)O(3)) nanostructures on a titania (TiO(2)) nanotubular template is carried out using a pulsed electrodeposition technique. The TiO(2) nanotubes are prepared by the sonoelectrochemical anodization method and are filled with iron (Fe) by pulsed electrodeposition. The Fe/TiO(2) composite is then annealed in an O(2) atmosphere to convert it to Fe(2)O(3)/TiO(2) nanorod-nanotube arrays. The length of the Fe(2)O(3) inside the TiO(2) nanotubes can be tuned from 50 to 550?nm by changing the deposition time. The composite material is characterized by scanning electron microscopy, transmission electron microscopy and diffuse reflectance ultraviolet-visible studies to confirm the formation of one-dimensional Fe(2)O(3)/TiO(2) nanorod-nanotube arrays. The present approach can be used for designing variable one-dimensional metal oxide heterostructures.  相似文献   

4.
Koh JH  Koh JK  Seo JA  Shin JS  Kim JH 《Nanotechnology》2011,22(36):365401
Porous TiO(2) nanotube arrays with three-dimensional (3D) interconnectivity were prepared using a sol-gel process assisted by poly(vinyl chloride-graft-4-vinyl pyridine), PVC-g-P4VP graft copolymer and a ZnO nanorod template. A 7 μm long ZnO nanorod array was grown from the fluorine-doped tin oxide (FTO) glass via a liquid phase deposition method. The TiO(2) sol-gel solution templated by the PVC-g-P4VP graft copolymer produced a random 3D interconnection between the adjacent ZnO nanorods during spin coating. Upon etching of ZnO, TiO(2) nanotubes consisting of 10-15 nm nanoparticles were generated, as confirmed by wide-angle x-ray scattering (WAXS), energy-filtering transmission electron microscopy (EF-TEM) and field-emission scanning electron microscopy (FE-SEM). The ordered and interconnected nanotube architecture showed an enhanced light scattering effect and increased penetration of polymer electrolytes in dye-sensitized solar cells (DSSC). The energy conversion efficiency reached 1.82% for liquid electrolyte, and 1.46% for low molecular weight (M(w)) and 0.74% for high M(w) polymer electrolytes.  相似文献   

5.
Nanocrystalline ZnO films with thicknesses of 5 nm, 10 nm, 20 nm, and 50 nm were deposited via magnetron sputtering onto the surface of vertically aligned multi-walled carbon nanotubes (MWCNTs). The ZnO/CNTs heterostructures were characterized by scanning electron microscopy, high resolution transmission electron microscopy, and X-ray diffraction studies. No structural degradation of the CNTs was observed and photoluminescence (PL) measurements of the nanostructured ZnO layers show that the optical properties of these films are typical of ZnO deposited at low temperatures. The results indicate that magnetron sputtering is a viable technique for growing heterostructures and depositing functional layers onto CNTs.  相似文献   

6.
Hong YJ  Kim YJ  Jeon JM  Kim M  Choi JH  Baik CW  Kim SI  Park SS  Kim JM  Yi GC 《Nanotechnology》2011,22(20):205602
We report on the fabrication of high-quality GaN on soda-lime glass substrates, heretofore precluded by both the intolerance of soda-lime glass to the high temperatures required for III-nitride growth and the lack of an epitaxial relationship with amorphous glass. The difficulties were circumvented by heteroepitaxial coating of GaN on ZnO nanorods via a local microheating method. Metal-organic chemical vapor deposition of ZnO nanorods and GaN layers using the microheater arrays produced high-quality GaN/ZnO coaxial nanorod heterostructures at only the desired regions on the soda-lime glass substrates. High-resolution transmission electron microscopy examination of the coaxial nanorod heterostructures indicated the formation of an abrupt, semicoherent interface. Photoluminescence and cathodoluminescence spectroscopy was also applied to confirm the high optical quality of the coaxial nanorod heterostructures. Mg-doped GaN/ZnO coaxial nanorod heterostructure arrays, whose GaN shell layers were grown with various different magnesocene flow rates, were further investigated by using photoluminescence spectroscopy for the p-type doping characteristics. The suggested method for fabrication of III-nitrides on glass substrates signifies potentials for low-cost and large-size optoelectronic device applications.  相似文献   

7.
The fabrication and structure characterization of ordered nanowire-nanotube hybrid arrays embedded in porous anodic aluminum oxide (AAO) membranes are reported. Arrays of TiO(2) nanotubes were first deposited into the pores of AAO membranes by a sol-gel technique. Co?nanowires were then electrochemically deposited into the TiO(2) nanotubes to form the nanowire-nanotube hybrid arrays. Scanning electron microscopy and transmission electron microscopy measurements showed a high nanowire filling factor and a clean interface between the Co nanowire and the TiO(2) nanotube. Application of these hybrids to the fabrication of ordered nanowire arrays with highly controllable geometric parameters is discussed.  相似文献   

8.
Xinyi Zhang 《Materials Letters》2010,64(10):1169-6286
Novel one dimensional (1D) nanostructured metallic electrodes have received much attention in the area of the fuel cell because of their extremely high surface-to-volume ratios and excellent activities. Here, we report the one-step fabrication of Pt-Cu alloy nanotube arrays. As determined by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, ordered Pt-Cu alloy nanotubes have been successfully fabricated utilizing a nanochannel alumina template. The electrocatalytic activities of the Pt-Cu alloy nanotubes for the oxidation of ethanol in acidic medium were investigated by cyclic voltammetry. The results show that the Pt-Cu alloy nanotubes can be used as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells.  相似文献   

9.
以氧化铝膜为模板、金属汞为电阴极,采用简单的直流电沉积方法制备出高度有序的镍纳米管阵列。利用扫描电子显微镜、透射电子显微镜、选区电子衍射、能谱仪、X射线粉末衍射和样品振动磁强计对样品进行形貌表征、成分及磁性能分析。结果表明,阵列中的镍纳米管彼此平行,尺寸均匀,纳米管外径为260~360nm;镍纳米管阵列表现出良好的磁各向异性,其易磁化方向垂直于镍纳米管阵列。以金属汞为电阴极是易形成纳米管的关键条件。  相似文献   

10.
本文采用一种简单而有效的电化学方法在硫酸铵体系中利用氧化铝模板(AAO)成功制备出规则有序的Ni的管状纳米阵列.使用这种方法可获得外径约为70nm,内径约为50nm的Ni纳米管.对所得的Ni纳米管进行了扫描电镜(SEM)、透射电镜(TEM)、选区电子衍射图(SAED)和X射线衍射(XRD)分析,结果表明:该方法制备的Ni纳米管高度有序,大小均一,其形貌受控于氧化铝模板的结构,外径与模板的孔径相等.  相似文献   

11.
采用紫外光刻技术首先制备了图案化的阳极氧化铝(AAO)模板,以此作为"二次模板",以不同浓度的ABS溶液浸润模板,成功地制备了不同结构的ABS纳米管阵列。用扫描电镜(SEM)对其微观形貌进行表征,结果显示,所获得的ABS纳米管阵列排列规整,高度有序,与掩膜的图案完全一致。并且讨论了溶液浓度对纳米管壁厚的影响。  相似文献   

12.
Ni nanotube arrays with different diameters were fabricated in the pores of the porous anodic alumina membranes by direct current electrodeposition. The crystal structure and micrograph of Ni nanotube arrays were characterized by X-ray diffraction, transmission electron microscopy, and field-emission scanning electron microscopy. The results indicate that Ni nanotubes have no preferred orientation and are polycrystalline structure. The magnetic behaviors of Ni nanotube arrays with different diameters are investigated, and the coercivity of Ni nanotubes depends strongly on their diameters. The size-dependent behavior of the coercivity is qualitatively explained in terms of localized magnetization reversal.  相似文献   

13.
定向碳纳米管阵列在石英玻璃基底上的模板化生长研究   总被引:5,自引:0,他引:5  
分别以带有刻痕的石英玻璃和溅射过Au膜的石英玻璃为生长基底,通过催化裂解二茂铁和二甲苯混合物的方法,在基底上制备出了模板化的定向碳纳米管(CNT)阵列,扫描电镜(SEM)和透射电镜(TEM)观察表明:在这两种基底上生长的定向碳纳米管阵列的模板化程度都很高,其中的碳纳米管多为直径在20~50nm的多壁管(MWNT),且具有很好的定向性。本文还分析、对比了基底材料对定向碳纳米管生长的影响,初步探讨了定向碳纳米管模板化生长的形成机制。  相似文献   

14.
A highly ordered Co/Ni0.4Zn0.6Fe2O4 coaxial nanocable array has been synthesized based on porous anodized aluminum oxide template via a new approach, which combines an improved sol-gel template method and alternating current electrochemical deposition. Scanning electron microscopy and transmission electron microscopy images show the nanocables are uniform with outer diameter of about 50 nm and inner diameter of about 17 nm. X-ray diffraction patterns and energy dispersive spectrometer confirm that Co nanowires are successfully deposited into the pores of the Ni0.4Zn0.6Fe2O4 nanotubes. Normalized magnetic hysteresis loops demonstrate the coercive force and the squareness with the applied field parallel to the axis of the nanocables increase dramatically compared with that of the nanotubes.  相似文献   

15.
The coaxial nanostructure composite materials of LiMn2O4 nanowires encapsulated in ZnO nanotubes are fabricated successfully via sol–gel method by using two-step template process. Transmission electron microscopy (TEM) and scanning electronic microscopy (SEM) results conformably show that the synthesized ZnO nanotubes possess the explicit end-opened tubular structure in uniform out diameter and wall thickness. Selected area electron diffraction (SAED) pattern, X-ray diffractometer (XRD), and X-ray photoelectron spectroscope (XPS) analysis jointly demonstrate that the main body of the fabricated coaxial composites is spinel structure LiMn2O4. It is expected that the two-step template process can be used to mass-produce coaxial LiMn2O4/ZnO nanocomposite materials as a novel cathode materials in lithium ion battery.  相似文献   

16.
Highly ordered nanotube oxide layers were developed on low rigidity quaternary beta-type Ti-35Nb-5Ta-7Zr alloy by controlled anodic oxidation in electrolyte containing 1 M H3PO4 and 0.5 wt% NaF at room temperature. The diameters of the nanotubes formed were in the range of 30 to 80 nm. Electrochemical corrosion behavior of the nanotubular alloy was studied in Ringer's solution at 37 +/- 1 degrees C using potentiodynamic polarization and AC Impedance. The result of the study showed that nanotube formation on the surface affect the passivation behavior of the quaternary alloy significantly. However the corrosion current density was considerably higher for the nanotubular alloy.  相似文献   

17.
采用电化学沉积的方法,以阳极氧化法制备的二氧化钛纳米管阵列为基底,制备出高度有序的TiO_2-聚吡咯(PPy)纳米阵列,再通过共热法,将单质硫颗粒负载到基底阵列中,得到S/PPy/TiO_2纳米阵列结构复合材料。扫描电镜(SEM)、透射电镜(TEM)、能谱(EDX)、傅里叶变换红外光谱(FT-IR)和热重分析(TGA)表征结果表明,TiO_2纳米管高度有序平行排列,管径约120nm,聚吡咯均匀沉积在纳米管壁上,复合材料中硫的质量分数约为61.9%。电化学测试结果表明,在0.1C电流密度下,S/PPy/TiO_2纳米复合材料首次循环比容量达1155mAh·g-1,100次循环后比容量为648.4mAh·g-1,库伦效率保持在96.8%。高容量下良好的循环稳定性能显示出S/TiO_2/PPy纳米阵列结构复合材料作为锂硫电池正极材料的优势。  相似文献   

18.
In this article, the ZnO nanorods embedded in highly ordered TiO(2) nanotube arrays (ZnO/TiO(2) NR/Ts) electrodes were fabricated through two steps: (1) electrosynthesis of TiO(2) nanotube arrays (TiO(2) NTs) in HF solution by anodization method; (2) followed by cathodic electrodeposition of ZnO embedded in the TiO(2) nanotube arrays. The morphological characteristics and structures of ZnO/TiO(2) NR/Ts electrodes were examined by field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD) analysis, and UV-vis spectra. The linear-sweep photovoltammetry response on the ZnO/TiO(2) NR/Ts electrode was presented and the photocurrent was dramatically enhanced on the ZnO/TiO(2) NR/Ts electrode, comparing with that on bare TiO(2) NTs electrode. The photocatalytic and photoelectrocatalytic activity of ZnO/TiO(2) NR/Ts electrode was evaluated in degradation of methyl orange (MO) in aqueous solution.  相似文献   

19.
A simple two-steps method has been successfully developed to synthesize ZnO nanotubes. The alkaline etching process was investigated in detail using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The formation of ZnO nanotube structures was due to the preferential dissolution of the defect-rich top (polar) faces. Cathodoluminescence (CL) was performed on both top and side surfaces of the ZnO tubes. Only the near-band-edge UV emission was observed, implying that the as-grown ZnO nanotubes have a very low concentration of defects. This CL result also provides evidence for explanation of ZnO tubular structure growth.  相似文献   

20.
SnO2 nanorod arrays were fabricated on hematiete nanotube arrays by an efficient hydrothermal method. The hematiete nanotube arrays were prepared by anodization of pure iron foil in an ethylene glycol solution. SnO2 nanorod arrays grew from the bottom of hematite nanotubes and were firmly combined with the iron foil substrate. The morphology and microstructure of SnO2 nanorod arrays are investigated by field-emission scanning electron microscopy, grazing incidence X-ray diffraction and UV–Vis absorbance spectra. The sample presented typical SnO2 nanorod arrays (reacted for 2 h) generally of 400 nm in length and 50 nm in side width showed the best photocatalytic activity and photoelectrochemical response under the UV illumination. It should be attributed to the effective electron–hole separation and the excellent electron transfer pathway along the 1D SnO2 nanorod arrays and hematiete nanotube arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号