首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomedical applications of non‐spherical nanoparticles such as photothermal therapy and molecular imaging require their efficient intracellular delivery, yet reported details on their interactions with the cell remain inconsistent. Here, the effects of nanoparticle geometry and receptor targeting on the cellular uptake and intracellular trafficking are systematically explored by using C166 (mouse endothelial) cells and gold nanoparticles of four different aspect ratios (ARs) from 1 to 7. When coated with poly(ethylene glycol) strands, the cellular uptake of untargeted nanoparticles monotonically decreases with AR. Next, gold nanoparticles are functionalized with DNA oligonucleotides to target Class A scavenger receptors expressed by C166 cells. Intriguingly, cellular uptake is maximized at a particular AR: shorter nanorods (AR = 2) enter C166 cells more than nanospheres (AR = 1) and longer nanorods (AR = 4 or 7). Strikingly, long targeted nanorods align to the cell membrane in a near‐parallel manner followed by rotating by ≈90° to enter the cell via a caveolae‐mediated pathway. Upon cellular entry, targeted nanorods of all ARs predominantly traffic to the late endosome without progressing to the lysosome. The studies yield important materials design rules for drug delivery carriers based on targeted, anisotropic nanoparticles.  相似文献   

2.
Regenerative medicine is a demanding field in terms of design and elaboration of materials able to meet the specifications that this application imposes. The regeneration of tissue is a multiscale issue, from the signaling molecule through cell expansion and finally tissue growth requiring a large variety of cues that should be delivered in place and time. Hence, the materials should be able to accommodate cells with respect to their phenotypes, to allow cell division to the right tissue, to maintain the integrity of the surrounding sane tissue, and eventually use their signaling machinery to serve the development of the appropriate neo-tissue. They should also present the ability to deliver growth factors and regulate tissue development, to be degraded into safe products, in order not to impede tissue development, and finally be easily implanted/injected into the patients. In this context, colloid-based materials represent a very promising family of products because one can take advantage of their high specific area, their capability to carry/deliver bio-active molecules, and their capacity of assembling (eventually in vivo) into materials featuring other mechanical, rheological, physicochemical properties. Other benefits of great interest would be their ease of production even via high through-put processes and their potential manufacturing from safe, biodegradable and biocompatible parent raw material. This review describes the state-of-the-art of processes leading to complex materials from the assembly of colloids meeting, at least partially, the above-described specifications for tissue engineering and regenerative medicine.  相似文献   

3.
Huang X  Meng X  Tang F  Li L  Chen D  Liu H  Zhang Y  Ren J 《Nanotechnology》2008,19(44):445101
It is important for a controlled release system to determine whether nanoparticles can penetrate cell membranes and deliver protein into the nuclear or cytosolic compartments of cells, and thus function as carriers. Here, we prepared different functionalized mesoporous magnetic hollow nanoparticles (MMHs) and chose bovine serum albumin (BSA) as a model protein to detect the intracellular trafficking of MMHs. The results showed that MMHs modified with amino groups (AMMHs) were efficient in protein loading and that the loading was dependent on the pH, temperature and ionic strength. Furthermore, we found that the AMMHs not only transported BSA into the cells but also released the BSA carried into the nuclear or cytosolic compartments of the cells. In addition, the nanoparticles were biocompatible, and the encapsulation of BSA in AMMHs did not affect their bioactivity. Taken together, AMMHs are excellent carriers for releasing protein into the cytosol and nucleus, and they have the potential to be used in a controlled release system.  相似文献   

4.
A diverse array of nanoparticles, including quantum dots (QDs), metals, polymers, liposomes, and dendrimers, are being investigated as therapeutics and imaging agents in cancer diseases. However, the role of the cancer‐cell phenotype on the uptake and intracellular fate of nanoparticles in cancer cells remains poorly understood. Reported here is that differences in cancer‐cell phenotypes can lead to significant differences in intracellular sorting, trafficking, and localization of nanoparticles. Unconjugated anionic QDs demonstrate dramatically different intracellular profiles in three closely related human‐prostate‐cancer cells used in the investigation: PC3, PC3‐flu, and PC3‐PSMA. QDs demonstrate punctated intracellular localization throughout the cytoplasm in PC3 cells. In contrast, the nanoparticles localize mainly at a single juxtanuclear location (“dot‐of‐dots”) inside the perinuclear recycling compartment in PC3‐PSMA cells, where they co‐localize with transferrin and the prostate‐specific membrane antigen. The results indicate that nanoparticle sorting and transport is influenced by changes in cancer‐cell phenotype and can have significant implications in the design and engineering of nanoscale drug delivery and imaging systems for advanced tumors.  相似文献   

5.
Fe(3)O(4) nanoparticles embedded in the shells of encapsulated microbubbles could be used therapeutically as in situ drug-delivery vehicles. Bioeffects on liver tumor cells SMMC-7721 due to the excitation of Fe(3)O(4) nanoparticles attached to microbubbles generated by ultrasound (US) are studied in an in vitro setting. The corresponding release phenomenon of Fe(3)O(4) nanoparticles from the shells of the microbubbles into the cells via sonoporation and related phenomena, including nanoparticle delivery efficiency, cell trafficking, cell apoptosis, cell cycle, and disturbed flow of intracellular calcium ions during this process, are also studied. Experimental observations show that Fe(3)O(4) nanoparticles embedded in the shells of microbubbles can be delivered into the tumor cells; the delivery rate can be controlled by adjusting the acoustic intensity. The living status or behavior of Fe(3)O(4) -tagged tumor cells can then be noninvasively tracked by magnetic resonance imaging (MRI). It is further demonstrated that the concentration of intracellular Ca(2+) in situ increases as a result of sonoporation. The elevated Ca(2+) is found to respond to the disrupted site in the cell membrane generated by sonoporation for the purpose of cell self-resealing. However, the excessive Ca(2+) accumulation on the membrane results in disruption of cellular Ca(2+) cycling that may be one of the reasons for the death of the cells at the G1 phase. The results also show that the Fe(3)O(4) -nanoparticle-embedded microbubbles have a lower effect on cell bioeffects compared with the non-Fe(3)O(4) -nanoparticle-embedded microbubbles under the same US intensity, which is beneficial for the delivery of nanoparticles and simultaneously maintains the cellular viability.  相似文献   

6.
Li W  Chen C  Ye C  Wei T  Zhao Y  Lao F  Chen Z  Meng H  Gao Y  Yuan H  Xing G  Zhao F  Chai Z  Zhang X  Yang F  Han D  Tang X  Zhang Y 《Nanotechnology》2008,19(14):145102
Manufactured fullerene nanoparticles easily enter into cells and hence have been rapidly developed for biomedical uses. However, it is generally unknown which route the nanoparticles undergo when crossing cell membranes and where they localize to the intracellular compartments. Herein we have used both microscopic imaging and biological techniques to explore the processes of [C(60)(C(COOH)(2))(2)](n) nanoparticles across cellular membranes and their intracellular translocation in 3T3 L1 and RH-35 living cells. The fullerene nanoparticles are quickly internalized by the cells and then routed to the cytoplasm with punctate localization. Upon entering the cell, they are synchronized to lysosome-like vesicles. The [C(60)(C(COOH)(2))(2)](n) nanoparticles entering cells are mainly via endocytosis with time-, temperature-?and energy-dependent manners. The cellular uptake of [C(60)(C(COOH)(2))(2)](n) nanoparticles was found to be clathrin-mediated but not caveolae-mediated endocytosis. The endocytosis mechanism and the subcellular target location provide key information for the better understanding and predicting of the biomedical function of fullerene nanoparticles inside?cells.  相似文献   

7.
While nanoparticles are an increasingly popular choice for labeling and tracking stem cells in biomedical applications such as cell therapy, their intracellular fate and subsequent effect on stem cell differentiation remain elusive. To establish an effective stem cell labeling strategy, the intracellular nanocrystal concentration should be minimized to avoid adverse effects, without compromising the intensity and persistence of the signal necessary for long‐term tracking. Here, the use of second‐harmonic generating barium titanate nanocrystals is reported, whose achievable brightness allows for high contrast stem cell labeling with at least one order of magnitude lower intracellular nanocrystals than previously reported. Their long‐term photostability enables to investigate quantitatively at the single cell level their cellular fate in hematopoietic stem cells (HSCs) using both multiphoton and electron microscopy. It is found that the concentration of nanocrystals in proliferative multipotent progenitors is over 2.5‐fold greater compared to quiescent stem cells; this difference vanishes when HSCs enter a nonquiescent, proliferative state, while their potency remains unaffected. Understanding the nanoparticle stem cell interaction allows to establish an effective and safe nanoparticle labeling strategy into somatic stem cells that can critically contribute to an understanding of their in vivo therapeutic potential.  相似文献   

8.
The study explored biological synthesis of metallic silver nanoparticles (AgNPs) from the less explored non‐pathogenic coprophilous fungus, sterile mycelium, PM0651419 and evaluates the antimicrobial efficacy of biosynthesised AgNPs when impregnated in wound fabrics and in combination with six antimicrobial agents. AgNPs alone proved to be potent antibacterial agents and in combination they enhanced the antibacterial activity and spectrum of antibacterials used in the study against a microbiologically diverse battery of Gram positive, Gram negative and multidrug‐resistant bacteria. AgNPs impregnated on the wound dressings established their antibacterial activity by significantly reducing the bacterial load of pathogenic bacteria like Staphylococcus aureus and Bacillus subtilis e stablishing potential as effective antimicrobial wound dressings for treatment of polymicrobial wound infections. This study presents the first report on the potential of biosynthesis of AgNPs from the under explored class of coprophilous fungi. Their promise to be used in wound dressings and as potent antibacterials alone and in combination is evaluatedInspec keywords: silver, nanoparticles, nanofabrication, nanomedicine, biomedical materials, microorganisms, antibacterial activity, wounds, fabricsOther keywords: antibacterial activity, coprophilous fungus PM0651419, biological synthesis, metallic silver nanoparticles, nonpathogenic coprophilous fungus, sterile mycelium, antimicrobial efficacy, biosynthesised AgNPs, wound fabrics, microbiologically diverse battery, Gram positive bacteria, Gram negative bacteria, multidrug‐resistant bacteria, wound dressings, bacterial load, pathogenic bacteria, Staphylococcus aureus, Bacillus subtilis, polymicrobial wound infections, Ag  相似文献   

9.
Peptide nanotubes (PNTs) have become a significant subject at the biological and bionanotechnology field. Here we describe the spectroscopic analysis of PNTs coatings, which were deposited by a physical vapor deposition technology. We show that we can adjust the electronic, and consequently the spectroscopic, photoluminescence (PL) properties of the PNT coatings, simply by changing the parameters of the PNT deposition. We show that by controlling the PNT deposition parameters we can observe different PL properties of the PNT coatings and significantly strengthen the PL in the visible blue region. We further explain that the strong blue emission is resulting from the conversion of the monomers to a different chemical structure. The strong blue emission, and our ability to adjust it, promotes the use of the PNTs as organic materials for light emitting devices.  相似文献   

10.
1D peptide nanostructures (i.e., peptide nanotubes, PNTs) exhibit tunable chemo‐physical properties and functions such as improved tissue adhesion, increased cellular uptake, and elongated blood circulation. In this study, the application of PNTs as a desirable 1D template for biomineralization of Cu2?xS nanoparticles (Cu2?xS NPs, x = 1–2) is reported. Monodisperse Cu2?xS NPs are uniformly coated on the peptide nanotubes owing to the specific high binding affinity of Cu ions to the imidazole groups exposed on the surface of nanotubes. The Cu2?xS NP–coated PNTs are further covalently grafted with an oxaliplatin prodrug (Pt–CuS–PNTs) to construct a versatile nanoplatform for combination cancer therapy. Upon 808 nm laser illumination, the nanoplatform induces significant hyperthermia effect and elicits reactive oxygen species generation through electron transfer and Fenton‐like reaction. It is demonstrated that the versatile nanoplatform dramatically inhibits tumor growth and lung metastasis of melanoma in a B16‐F10 melanoma tumor‐bearing mouse model by combined photo‐ and chemotherapy. This study highlights the ability of PNTs for biomineralization of metal ions and the promising potential of such nanoplatforms for cancer treatment.  相似文献   

11.
Metabolic biotinylation of intracellular and secreted proteins as well as surface receptors in mammalian cells provides a versatile way to monitor gene expression; to purify and target viral vectors; to monitor cell and tumor distribution in real time in vivo; to label cells for isolation; and to tag proteins for purification, localization, and trafficking. Here, we show that metabolic biotinylation of proteins fused to the bacterial biotin acceptor peptides (BAP) varies among different mammalian cell types and can be enhanced by over 10-fold upon overexpression of the bacterial biotin ligase directed to the same cellular compartment as the fusion protein. We also show that in vivo imaging of metabolically biotinylated cell surface receptors using streptavidin conjugates is significantly enhanced upon coexpression of bacterial biotin ligase in the secretory pathway. These findings have practical applications in designing more efficient targeting and imaging strategies.  相似文献   

12.
Nanoparticles have shown great potential in biological and biomedical applications due to their distinct physical and chemical properties. In the meanwhile, the biosafety of nanoparticles has also raised intense concerns worldwide. To address such concerns, great efforts have been made to examine short‐term effects of nanoparticles on cell survival and proliferation. More recently, exploration of long‐term effects of nanomaterials, particularly those with promising biomedical applications in vivo, has aroused significant interest. For example, gold nanoparticles (AuNPs) are generally considered non‐toxic to cell growth, whereas recent studies suggest that AuNPs might have long‐term effects on cellular metabolism and energy homeostasis. In this Review, recent advances in this direction are summarized. Further, possible mechanisms under which nanoparticles regulate metabolic signaling pathways, potential long‐term effects on cellular anabolic or catabolic processes, and their implications in human health and metabolic disorders are discussed.  相似文献   

13.
Can quantum dots (Qdots) act as relevant intracellular probes to investigate routing of ligands in live cells? The intracellular trafficking of Qdots that were coupled to the plant toxin ricin, Shiga toxin, or the ligand transferrin (Tf) was studied by confocal fluorescence microscopy. The Tf:Qdots were internalized by clathrin-dependent endocytosis as fast as Tf, but their recycling was blocked. Unlike Shiga toxin, the Shiga:Qdot bioconjugate was not routed to the Golgi apparatus. The internalized ricin:Qdot bioconjugates localized to the same endosomes as ricin itself but could not be visualized in the Golgi apparatus. Importantly, we find that the endosomal accumulation of ricin:Qdots affects endosome-to-Golgi transport of both ricin and Shiga toxin: Transport of ricin was reduced whereas transport of Shiga toxin was increased. In conclusion, the data reveal that, although coupling of Qdots to a ligand does not necessarily change the endocytic pathway normally used by the ligands studied, it appears that the ligand-coupled Qdot nanoparticles can be arrested within endosomes and somehow perturb the normal endosomal sorting in cells. Thus, the results demonstrate that Qdots may have severe consequences on cell physiology.  相似文献   

14.
In this paper a new generation of non-toxic nanoparticles based on the zirconium oxide doped with 0.5%Tb and co-doped by the range of 0–70% with Y was evaluated for the use as a fluorescent biomarker of neuronal trafficking. The ZrO2:Tb nanoparticles were created by microwave driven hydrothermal method. Influence of the yttrium content and thermal processing on the Tb3+ related luminescence emission was discussed. The higher intensities were achieved, when host was cubic and for the nanoparticles with 33 nm. Presence of yttrium was associated with the energy coupling of the host and dopant, wide excitation band is present at 309 and 322 nm before and after calcination respectively.For the experiment on living primary neurons, nanoparticles doped with 0.5%Tb and 7%Y were chosen based on their luminescence emission intensity. Recently transfer of the nanoparticles through the barriers in the organism including blood–brain barrier following their alimentary absorption was confirmed (Godlewski and Godlewski, 2012). This raised the possibility of the nanoparticle application as a tool in the neuroscience, and the question of potential mechanisms of nanoparticle turnover in neurons. Concentration of 0.001 mg/ml of ZrO2:0.5%Tb 7%Y in growth medium was added to the primary murine culture medium, and the intracellular trafficking of nanoparticles was observed following 15 min pre-incubation period. ZrO2:0.5%Tb 7%Y nanoparticles were dynamically absorbed by the neurons and the dynamic passage of transport vesicles containing ZrO2:0.5%Tb 7%Y nanoparticles was observed along the neuronal processes and in between two neighbouring neurons. Reassuming, the ZrO2:0.5%Tb 7%Y nanoparticles proved to be biocompatible and a valid tool to assess intracellular trafficking dynamics in the neurobiology.  相似文献   

15.
There is a crucial need for effective and easily dispersible colloidal microsensors able to detect local pH changes before irreversible damages caused by demineralization, corrosion, or biofilms occur. One class of such microsensors is based on molecular dyes encapsulated or dispersed either in polymer matrices or in liquid systems exhibiting different colors upon pH variations. They are efficient but often rely on sophisticated and costly syntheses, and present significant risks of leakage and photobleaching damages, which is detrimental for mainstream applications. Another approach consists of exploiting the distance‐dependent plasmonic properties of metallic nanoparticles. Still, assembling nanoparticles into dispersible colloidal pH‐sensitive sensors remains a challenge. Here, it is shown how to combine optically active plasmonic gold nanoparticles and pH‐responsive thin shells into “plasmocapsules.” Upon pH change, plasmocapsules swell or shrink. Concomitantly, the distance between the gold nanoparticles embedded in the polymeric matrix varies, resulting in an unambiguous color change. Billions of micron‐size sensors can thus be easily fabricated. They are nonintrusive, reusable, and sense local pH changes. Each plasmocapsule is an independent reversible microsensor over a large pH range. Finally, their potential use for the detection of bacterial growth is demonstrated, thus proving that plasmocapsules are a new class of sensing materials.  相似文献   

16.
Multi‐drug resistance in pathogenic bacteria has created immense clinical problem globally. To address these, there is need to develop new therapeutic strategies to combat bacterial infections. Silver nanoparticles (AgNPs) might prove to be next generation nano‐antibiotics. However, improved efficacy and broad‐spectrum activity is still needed to be evaluated and understood. The authors have synthesised AgNPs from Withania somnifera (WS) by green process and characterised. The effect of WS‐AgNPs on growth kinetics, biofilm inhibition as well as eradication of preformed biofilms on both gram‐positive and gram‐negative pathogenic bacteria was evaluated. The authors have demonstrated the inhibitory effect on bacterial respiration and disruption of membrane permeability and integrity. It was found that WS‐AgNPs inhibited growth of pathogenic bacteria even at 16 µg/ml. At sub‐minimum inhibitory concentration concentration, there was approximately 50% inhibition in biofilm formation which was further validated by light and electron microscopy. WS‐AgNPs also eradicated the performed biofilms by varying levels at elevated concentration. The bacterial respiration was also significantly inhibited. Interaction of WS‐AgNPs with test pathogen caused the disruption of cell membrane leading to leakage of cellular content. The production of intracellular reactive oxygen species reveals that WS‐AgNPs exerted oxidative stress inside bacterial cell causing microbial growth inhibition and disrupting cellular functions.Inspec keywords: silver, nanoparticles, nanofabrication, nanomedicine, antibacterial activity, biomedical materials, cellular biophysics, microorganisms, biomembranes, electron microscopy, oxidation, biochemistry, permeabilityOther keywords: broad‐spectrum inhibitory effect, green synthesised silver nanoparticles, Withania somnifera (L.), microbial growth, putative mechanistic approach, multidrug resistance, therapeutic strategies, bacterial infections, next generation nanoantibiotics, broad‐spectrum activity, WS‐AgNPs, growth kinetics, biofilm inhibition, gram‐positive pathogenic bacteria, gram‐negative pathogenic bacteria, bacterial respiration, membrane permeability, membrane integrity, subminimum inhibitory concentration concentration, biofilm formation, light pathogenic bacteria, electron microscopy, cell membrane, cellular content leakage, intracellular reactive oxygen species, oxidative stress, microbial growth inhibition, Ag  相似文献   

17.
Self-assembled peptide nanostructures are electronically insulating as are most biomaterials derived from natural amino acids. To obtain additional properties and increase the applicability of peptide nanomaterials, some chemical modifications can be performed and materials can be functionalized to form hybrid compounds. In this work, we described the formation of L-diphenylalanine nanotubes (PNTs) with cyclic-tetrameric copper(II) species containing the ligand (4-imidazolyl)ethylene-2-amino-1-ethylpyridine [Cu(4)(apyhist)(4)](4+) in the Nafion membrane on a vitreous carbon electrode surface. This copper complex has been studied as structural and functional models for the active centers of copper containing redox enzymes. Scanning electron microscopy was used to confirm the formation of the nanostructures. The electrochemical properties of the PNT-[Cu(4)(apyhist)(4)](4+)/Nafion film on a glassy carbon electrode were characterized using cyclic voltammetry and square-wave voltammetry and showed high electrocatalytic activity toward the oxidation of dopamine (DA). The detection sensitivity was found to be enhanced by the use of copper(II) complex in the PNTs/Nafion films. Under the optimum conditions, the square-wave voltammetry peak height was linearly related to the DA concentration over two concentration intervals, viz., 5.0-40 μmol L(-1) and 40-1000 μmol L(-1). The detection limit was 2.80 μmol L(-1) (S/N = 3), and ascorbic acid did not interfere with the DA detection. These results suggested that this hybrid bioinorganic system provides an attractive advantage for a new type of electrochemical sensors. The detection sensitivity was found to be enhanced by use of PNTs.  相似文献   

18.
As a consequence of their well‐defined nanostructure and intrinsic bioactive functionality, virus‐based nanoparticles have shown promise for mediating gene delivery. Adeno‐associated virus (AAV) nanoparticles, which possess an excellent safety profile and therapeutic potential, hold potential for use in human gene therapy. However, because of their native tropisms, the applicability of AAV nanoparticles is often limited to restricted ranges of cells or tissues. Thus, retargeting AAV particles to the desired cell populations has continued to be a major research focus in many gene therapy applications. In this study, a general strategy is reported for nanoparticle targeting. This involves the site‐specific modification of AAV type 2 (AAV2) by genetically incorporating a short peptide, in this case an aldehyde tag, in the viral capsid. Such a tag can be exploited for site‐specific attachment of targeting molecules and allows for further introduction of targeting antibodies or ligands. It is shown that this modification neither affects the level of infectious viral titer nor intracellular trafficking properties. Furthermore, the site‐specific conjugation of targeting antibodies could significantly enhance viral transduction to those target cells that have otherwise exhibited very low permissiveness to AAV2 infection. This method also allows the functional incorporation of RGD peptides onto AAV2 for enhanced delivery with implications for cancer gene therapy.  相似文献   

19.
Cellular and molecular‐level interactions of nanoparticles with biological systems are a rapidly evolving field requiring an improved understanding of endocytic trafficking as the principal driver and regulator of signaling events and cellular responses. An understanding of these processes is vital to nanomedicine applications. Studies investigating the complex interplay of these processes and their relationship to targeted nanoparticles exploiting endocytic pathways are notably lacking. It is known that integrins traffic through the endosomal pathway and participate in diverse roles controlling signal transduction, cell migration, and proliferation. Here, it is shown that ultrasmall, nontoxic, core–shell silica nanoparticles (C‐dots), surface‐functionalized with cRGDY peptides, modestly activate integrin‐signaling pathways, in turn, promoting the enhancement of cellular functions. First, nanomolar concentrations, two orders of magnitude higher than clinical trial doses, internalize within αvβ3 integrin‐expressing melanoma and endothelial cells, predominantly through an integrin receptor‐dependent endocytic route. Second, integrin‐mediated activation of focal adhesion kinase (FAK) and downstream signaling pathways occurs, in turn, upregulating phosphorylated protein expression levels and promoting concentration‐dependent cellular migration and proliferative activity. Inhibiting FAK catalytic activity leads to decreased phosphorylation levels and cellular migration rates. These findings may inform the design of more effectively‐targeted nanomedicines and provide insights into endocytic regulation of signal transduction.  相似文献   

20.
In order to elucidate mechanisms of nanoparticle (NP)–cell interactions, a detailed knowledge about membrane–particle interactions, intracellular distributions, and nucleus penetration capabilities, etc. becomes indispensable. The utilization of NPs as additives in many consumer products, as well as the increasing interest of tailor‐made nanoobjects as novel therapeutic and diagnostic platforms, makes it essential to gain deeper insights about their biological effects. Transmission electron microscopy (TEM) represents an outstanding method to study the uptake and intracellular fate of NPs, since this technique provides a resolution far better than the particle size. Additionally, its capability to highlight ultrastructural details of the cellular interior as well as membrane features is unmatched by other approaches. Here, a summary is provided on studies utilizing TEM to investigate the uptake and mode‐of‐action of tailor‐made polymer nanoparticles in mammalian cells. For this purpose, the capabilities as well as limitations of TEM investigations are discussed to provide a detailed overview on uptake studies of common nanoparticle systems supported by TEM investigations. Furthermore, methodologies that can, in particular, address low‐contrast materials in electron microscopy, i.e., polymeric and polymer‐modified nanoparticles, are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号