首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diameter controllable ZnO nanowires have been fabricated by thermal evaporation (vapor transport) with various sizes of gold nanoparticles as catalysts. Diluted magnetic semiconductor (DMS) Zn(1-x)Co(x)O nanowires were then made by high energy Co ion implantation. The as-implanted and the argon-annealed Zn(1-x)Co(x)O nanowires displayed weak ferromagnetism while the high-vacuum annealed nanowires exhibited strong ferromagnetic ordering at room temperature. Size dependent behavior has been observed in the magnetic field and temperature dependences of magnetization. The shrinkage of the nanowire diameter reduced the spontaneous magnetization as well as the hysteresis loops. Field cooled and zero-field cooled magnetization and coercivity measurements were performed between 2 and 300 K to study the evolution of magnetism from the weak to the strong ferromagnetic states. In particular, superparamagnetic features were observed and shown to be intrinsic characteristics of the DMS Zn(1-x)Co(x)O nanowires. The room-temperature spontaneous magnetization of individual Zn(1-x)Co(x)O nanowires was also established by using magnetic force microscope measurements.  相似文献   

2.
Piezoelectric ZnO thin films have been successfully used for multilayer surface acoustic wave (SAW) and bulk acoustic wave (BAW) devices. Magnesium zinc oxide (Mg/sub x/Zn/sub 1-x/O) is a new piezoelectric material, which is formed by alloying ZnO and MgO. Mg/sub x/Zn/sub 1-x/O allows for flexibility in thin film SAW device design, as its piezoelectric properties can be tailored by controlling the Mg composition, as well as by using Mg/sub x/Zn/sub 1-x/O/ZnO multilayer structures. We report the metal-organic chemical vapor deposition (MOCVD) growth, structural characterization and SAW evaluation of piezoelectric Mg/sub x/Zn/sub 1-x/O (x<0.35) thin films grown on (011~2) r-plane sapphire substrates. The primary axis of symmetry, the c-axis, lies on the Mg/sub x/Zn/sub 1-x/O growth plane, resulting in the in-plane anisotropy of piezoelectric properties. SAW test devices for Rayleigh and Love wave modes, propagating parallel and perpendicular to the c-axis, were designed and fabricated. Their SAW properties, including velocity dispersion and piezoelectric coupling, were characterized. It has been found that the acoustic velocity increases, whereas the piezoelectric coupling decreases with increasing Mg composition in piezoelectric Mg/sub x/Zn/sub 1-x/O films.  相似文献   

3.
Xu J  Yang X  Wang H  Chen X  Luan C  Xu Z  Lu Z  Roy VA  Zhang W  Lee CS 《Nano letters》2011,11(10):4138-4143
Arrays of ZnO/Zn(x)Cd(1-x)Se (0 ≤ x ≤ 1) core/shell nanocables with shells of tunable compositions have been synthesized on fluorine-doped tin oxide glass substrates via a simple ion-exchange approach. Through the effects of stoichiometry and type II heterojunction, optical absorptions of the nanocable arrays can be controllably tuned to cover almost the entire visible spectrum. Lattice parameters and band gaps of the ternary Zn(x)Cd(1-x)Se shells were found to have respectively linear and quadratic relationships with the Zn content (x). These ZnO/Zn(x)Cd(1-x)Se nanocable arrays are further demonstrated to be promising photoelectrodes for photoelectrochemical solar cells, giving a maximum power conversion efficiency up to 4.74%.  相似文献   

4.
Zhai T  Gu Z  Yang W  Zhang X  Huang J  Zhao Y  Yu D  Fu H  Ma Y  Yao J 《Nanotechnology》2006,17(18):4644-4649
Large-scale synthesis of ternary Zn(x)Cd(1-x)S zigzag nanowires was achieved in a one-step metal-organic chemical vapour deposition (MOCVD) process with co-fed single precursors of ZnS and CdS. Their morphologies, structures and optical properties were characterized and confirmed by scanning electron microscopy, high-resolution transmission electron microscopy, x-ray spectroscopy, and photoluminescence. The Zn(x)Cd(1-x)S zigzag nanowires are single crystalline, with axis [001], by changing the growth direction from [Formula: see text] to [Formula: see text]. Regarding the formation of zigzag nanowires, we suggest that the shear strain and slight fluctuation of the reaction conditions may be the major factors that make the nanowires change growth direction. In addition, because of the lower temperature and versatility, this new fabrication method might present a new and facile way to form other ternary nanomaterials. Furthermore, the green emission of the nanowires may have potential applications in electronic/optical nanodevices.  相似文献   

5.
Lee J  Flack F  Samarth N  Collins RW 《Applied optics》1997,36(22):5372-5382
The II-VI ternary semiconductor alloy system Zn(1-x) Cd(x) Se with 0 < or = x < or = 0.2 has important applications as the active material in blue-green light-emitting diodes and lasers. For the wavelength and temperature ranges over which these devices are designed to operate, a knowledge of the optical properties of the alloys is important. We report the results of spectroscopic ellipsometry measurements of the real part of the dielectric function epsilon1 for Zn-rich Zn(1-x) Cd(x) Se layers deposited epitaxially on (100) GaAs. We derive compact expressions that allow one to calculate accurate epsilon1 spectra from 1.5 eV, the low-energy limit of our ellipsometer, to E0-0.05 eV, where E0 is the fundamental bandgap energy, for any composition and temperature within the ranges 0 < or = x < or = 0.34 and 25 < or = T < 260 degrees C. Furthermore, we expect that the results can also be extrapolated to cover the substrate temperature range typically used for the growth of these films (250-300 degrees C). Hence the results presented here are also useful in future real-time spectroscopic ellipsometry studies of Zn(1-x) Cd(x) Se film growth.  相似文献   

6.
Diameter-dependent compositions of Si(1-x)Ge(x) nanowires grown by a vapor-liquid-solid mechanism using SiH(4) and GeH(4) precursors are studied by transmission electron microscopy and X-ray energy dispersive spectroscopy. For the growth conditions studied, the Ge concentration in Si(1-x)Ge(x) nanowires shows a strong dependence on nanowire diameter, with the Ge concentration decreasing with decreasing nanowire diameter below approximately 50 nm. The size-dependent nature of Ge concentration in Si(1-x)Ge(x) NWs is strongly suggestive of Gibbs-Thomson effects and highlights another important phenomenon in nanowire growth.  相似文献   

7.
Octylamine capped Zn(1-x)CdxO alloys and Zn(1-x)CdxO/ZnO core/shell nanoparticles have been grown by the thermal decomposing of zinc and cadmium cupferronates in organic solvents. Zn(1-x)CdxO alloys incorprated with different concentration of Cd have been grown by quickly injecting of their precursors at 200 degrees C. Zn(1-x)CdxO/ZnO core/shell nanoparticles are performed by slowly injecting of shell precursors at 180 degrees C. The prepared nanoparticles are characterized by X-ray diffraction, absorption spectrometer, Mirco-Raman spectrometer and transmission electron microscopy. The band gap of ZnCdO alloys shrinks linearly and the crystal lattice expands with an increase of Cd concentration. The growth of ZnO shells on ZnCdO cores enhances the core luminescence dramatically and results in a red shift in the absorption and emission of Zn(1-x)CdxO cores.  相似文献   

8.
Kim JU  Lee MH  Yang H 《Nanotechnology》2008,19(46):465605
3.6?nm sized Mn-doped Zn(1-x)Cd(x)S quantum dots (QDs) with the composition (x) of 1, 0.5, 0.2 and 0 were synthesized by a reverse micelle approach. The bandgap energy of Zn(1-x)Cd(x)S:Mn QDs was tuned to a higher energy by increasing the Zn content, and the actual composition of alloyed Zn(1-x)Cd(x)S:Mn QDs was found to be different from the solution composition. Consecutive overcoating of the Zn(1-x)Cd(x)S:Mn QD surface by a ZnS shell was done, and the core/shell structured QDs exhibited quantum yields of 14-30%, depending on the composition of the core QDs. Using CdS:Mn/ZnS QDs, orange and white light-emitting diodes (LEDs) pumped by a near-UV and blue LED chips, respectively, were fabricated and their optical properties are described.  相似文献   

9.
The Ga(x)In(1-x)Sb ternary system has many interesting material properties, such as high carrier mobilities and a tunable range of bandgaps in the infrared. Here we present the first report on the growth and compositional control of Ga(x)In(1-x)Sb material grown in the form of nanowires from Au seeded nanoparticles by metalorganic vapor phase epitaxy. The composition of the grown Ga(x)In(1-x)Sb nanowires is precisely controlled by tuning the growth parameters where x varies from 1 to ~0.3. Interestingly, the growth rate of the Ga(x)In(1-x)Sb nanowires increases with diameter, which we model based on the Gibbs-Thomson effect. Nanowire morphology can be tuned from high to very low aspect ratios, with perfect zinc blende crystal structure regardless of composition. Finally, electrical characterization on nanowire material with a composition of Ga(0.6)In(0.4)Sb showed clear p-type behavior.  相似文献   

10.
Assembling arrays of ordered nanowires is a key objective for many of their potential applications. However, a lack of understanding and control of the nanowires' growth mechanisms limits their thorough development. In this work, an appealing new path towards self-organized epitaxial nanowire networks produced by high-throughput solution methods is reported. Two requisites are identified to generate the nanowires: a thermodynamic driving force for an unrestricted elongated equilibrium island shape, and a very fast effective coarsening rate. These requirements are met in anisotropically strained Ce(1-x)Gd(x)O(2-y) nanowires with the (011) orientation grown on the (001) surface of LaAlO(3) substrates. Nanowires with aspect ratios above ≈100 oriented along two mutually orthogonal axes are obtained leading to labyrinthine networks. A very fast effective nanowire growth rate (≈60 nm min(-1)) for ex-situ thermally annealed nanostructures derives from simultaneous kinetic processes occurring in a branched network. Ostwald ripening and anisotropic dynamic coalescence, both promoted by strain-driven attractive nanowire interaction, and rapid recrystallization, enabled by fast atomic diffusion associated with a high concentration of oxygen vacancies, contribute to such an effective growth rate. This bottom-up approach to self-organized nanowire growth has a wide potential for many materials and functionalities.  相似文献   

11.
The effects of Mg concentration and annealing temperature on the characteristics of nanocrystalline Mg(x)Zn(1 - x)O thin films (where x = 0-0.4) were studied using electron microscopy and photoluminescence. The films were prepared by a sol-gel method. The solid solubility limit of MgO in ZnO for the sol-gel-derived Mg(x)Zn(1 - x)O films in the present study was determined to be ~ 20 at.%. Microstructural characterization of the films showed that the wurtzite crystallites decrease in size with increase in Mg concentration up to the solubility limit. Increasing Mg concentration beyond the solubility limit resulted in a decrease in crystallinity of the films. The bandgap energy was found to increase with Mg concentration whereas the linewidth first increased and then decreased when the Mg concentration was increased beyond the solubility limit. Photoluminescence properties have been correlated to the microstructure of the films. A growth mechanism for Mg(x)Zn(1 - x)O nanocrystalline films under the present processing conditions has also been proposed.  相似文献   

12.
This paper reports on the epitaxial growth of single-crystalline ternary Zn(1-x)Mg(x)Te nanowires covering a broad compositional range of molar fraction 0≤x≤0.75. The nanowires were grown on (100), (110), and (111) GaAs substrates using a vapor-liquid-solid mechanism. Solid source molecular beam epitaxy and an Au-based nanocatalyst were used for these purposes. The composition of nanowires can be adjusted by changing the ratio of Mg to Zn molecular beam fluxes. Electron microscopy images show that the nanowires are smooth and slightly tapered. The diameters of the obtained nanowires are from?30 to 70?nm and their length is around 1?μm. X-ray diffraction analysis and transmission electron microscopy reveal that the nanowires have a zinc-blende structure throughout the whole range of obtained compositions, and have a [Formula: see text] growth axis. The Raman measurements reveal both the expected splitting and shift of phonon lines with increasing Mg content, thus proving the substitutional incorporation of Mg into metallic sites of the ZnTe lattice.  相似文献   

13.
The widely tunable emissions of Zn(x)Cd(1-x)Se alloy quantum dots (QDs), which emit green to red wavelengths from 534 to 620 nm, are reported. Green-, yellow-, orange-, and red-emitting QDs were synthesized by varying a point of time for oleylamine (as a co-surfactant) addition and a Se precursor amount, and keeping a constant Zn/Cd precursor ratio. With reaction time the alloying and particle growth of the alloy QDs progressed simultaneously in the opposite direction in the variation of their band gap. However, the band gap energies of all QDs were observed to be gradually blue-shifted due to the slight dominance of alloying over the particle growth effect. The compositions of alloy QDs were estimated based on their sizes and band gap energies. Zn(x)Cd(1-x)Se core QDs were also overcoated with a ZnSe shell with a higher band gap to enhance their quantum yields.  相似文献   

14.
The growth of Diluted Magnetic Semiconducting (DMS) Zn(1-x)Mn(x)S (0 < or = x < 0.6) nanowires (NWs) using a three-zone furnace and two solid sources is reported. The approach is generally applicable to many binary and ternary NW systems that grow by the Vapor-Liquid-Solid growth mechanism. Mn concentration was controlled by the temperature of the Mn source. The Zn/Mn ratio was found to determine the crystalline structure, i.e., wurtzite or zinc blende. High-resolution transmission electron microscopy measurements revealed highly crystalline single phase NWs. The vibrational properties of the DMS NWs with different Zn/Mn ratios were studied by correlating their Raman scattering spectra with the composition measured by Energy Dispersive X-Ray Spectroscopy (EDS). We find that the transverse optical (TO) phonon band disappears at the lowest Mn concentrations, while the longitudinal optical (LO) phonon band position was found insensitive to x. Three additional Raman bands were observed between the ZnS q = 0 TO and LO phonons when Mn atoms were present in the NWs. These bands are similar to those reported previously for bulk Zn(1-x)Mn(x)S and their origin is still controversial.  相似文献   

15.
SnO2 and Ni(x)Sn(1-x)O(2-delta) (x = 0.007-0.043) 1D nanostructures are fabricated using a catalyzer assisted chemical vapor deposition (CVD). The morphology of the 1D nanostructure is sensitive to the fabrication conditions. As the Ar flux rate is decreased from 50 sccm to 40 sccm, the 1D nanostructure changes from nanowire to nanobelt. All of the Ni(x)Sn(1-x)O(2-delta) 1D nanostructures exhibit room temperature ferromagnetism (RTFM). With the increasing x, magnetic moment per Ni ion increases at first, reaches a maximum of 3.33 microB in x = 0.025, then decreases. The results of annealing in vacuum and oxidizing atmospheres reveal that oxygen vacancies play a crucial role in introducing ferromagnetism, which implies that the origin of RTFM can be understood by the bound magnetic polaron model (BMP).  相似文献   

16.
Structural and optical properties of Cd x Zn1?x O (x = 0.0, 0.025, 0.050, 0.075, 0.1) nanopowder, synthesized by co-precipitation method have been investigated. The effect of annealing on the structural and morphological properties was studied using X-ray diffraction. The samples with x = 0.0 up to 0.075 exhibit wurtzite hexagonal phase, whereas, the sample with x = 0.1 shows two phases: wurtzite hexagonal ZnO and cubic CdO phase. This behavior is explained on the basis of solubility of CdO in ZnO. Energy Dispersive X-ray analysis (EDX) results revealed the existence of Cd, Zn, and O elements in the nanopowder. Transmission Electron Microscopy (TEM) images confirm that the particle size of the prepared samples is in nano range. The optical band gap values obtained from the absorption spectra show that absorption depends on Cd composition. By doping of ZnO with CdO, a red shift in the absorption edge was observed.  相似文献   

17.
The intrinsic sensitivity of cadmium zinc telluride (Cd/sub 1-x/Zn/sub x/Te) semiconductor detectors has been experimentally measured, within the X-ray diagnostic energy range. The results of this study indicate that the intrinsic efficiency of Cd/sub 1-x/Zn/sub x/Te can be increased by optimizing geometrical and physical detection parameters such as X-ray irradiation geometry, detector thickness, and applied electric field. These results indicate that Cd/sub 1-x/Zn/sub x/Te is a suitable candidate for digital imaging applications.  相似文献   

18.
In this work high quality crystalline In(1_x)Sb(x) nanowires (NWs) are synthesized via a template-based electrochemistry method. Energy dispersive spectroscopy studies show that composition modulated In(1-x)Sb(x) (x approximately 0.5 or 0.7) nanowires can be attained by selectively controlling the deposition potential during growth. Single In(1-x)Sb(x) nanowire field effect transistors (NW-FETs) are fabricated to study the electrical properties of as-grown NWs. Using scanning gate microscopy (SGM) as a local gate the I(ds)-V(ds) characteristics of the fabricated devices are modulated as a function of the applied gate voltage. Electrical transport measurements show n-type semiconducting behavior for the In0.5Sb0.5 NW-FET, while a p-type behavior is observed for the In0.3Sb0.7 NW-FET device. The ability to grow composition modulated In(1-x)Sb(x) NWs can provide new opportunities for utilizing InSb NWs as building blocks for low-power and high speed nanoscale electronics.  相似文献   

19.
Seong HK  Jeon EK  Kim MH  Oh H  Lee JO  Kim JJ  Choi HJ 《Nano letters》2008,8(11):3656-3661
This study reports the electrical transport characteristics of Si(1-x)Gex (x=0-0.3) nanowires. Nanowires with diameters of 50-100 nm were grown on Si substrates. The valence band spectra from the nanowires indicate that energy band gap modulation is readily achievable using the Ge content. The structural characterization showed that the native oxide of the Si(1-x)Gex nanowires was dominated by SiO2; however, the interfaces between the nanowire and the SiO2 layer consisted of a mixture of Si and Ge oxides. The electrical characterization of a nanowire field effect transistor showed p-type behavior in all Si(1-x)Gex compositions due to the Ge-O and Si-O-Ge bonds at the interface and, accordingly, the accumulation of holes in the level filled with electrons. The interfacial bonds also dominate the mobility and on- and off-current ratio. The large interfacial area of the nanowire, together with the trapped negative interface charge, creates an appearance of p-type characteristics in the Si(1-x)Gex alloy system. Surface or interface structural control, as well as compositional modulation, would be critical in realizing high-performance Si(1-x)Gex nanowire devices.  相似文献   

20.
We report a general method for determining the spin polarization from nanowire materials using Andreev reflection spectroscopy implemented with a Nb superconducting contact and common electron-beam lithography device fabrication techniques. This method was applied to magnetic semiconducting Fe(1-x)Co(x)Si alloy nanowires with x? = 0.23, and the average spin polarization extracted from 6 nanowire devices is 28 ± 7% with a highest observed value of 35%. Local-electrode atom probe tomography (APT) confirms the homogeneous distribution of Co atoms in the FeSi host lattice, and X-ray magnetic circular dichroism (XMCD) establishes that the elemental origin of magnetism in this strongly correlated electron system is due to Co atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号