首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
董怀斌  李长青  邹霞辉 《材料导报》2018,32(3):427-433, 442
碳纳米管特殊的结构和优异的性能使之成为复合材料增强的首选填料,综述了电场条件下碳纳米管在聚合物中有序排列的研究进展。分析了电场类型、碳纳米管表面官能化、加电时间、碳纳米管尺寸和含量等因素对电场诱导碳纳米管有序排列的影响,讨论了定向有序排列的碳纳米管对复合材料的力学、电学和热学等性能的影响,分析了碳纳米管定向排列机理以及碳纳米管定向程度的表征方法。  相似文献   

2.
Highly filled conductive fillers (>60 vol%) for conductive polymer composites (CPCs) cause the degradation of rheological and mechanical properties. This study investigated the rheological properties of highly filled metal powder (SS316L) in a polymer matrix composite combined with carbon nanotubes (CNTs) and Graphite (G). The effects of filler concentrations and chemical functionalization on the mechanical and electrical properties of the resulting CPC were determined. Feedstocks with different concentrations were injection molded, and the molded specimens were subjected to tests of tensile strength, three-point bending, hardness, and three-point probe electrical conductivity. The feedstock of CNTs/G/SS316L can be injection molded from 28 vol% polypropylene (PP). The functionalized CPC shows higher strength and elongation than as-produced CPC based on the tensile and flexural tests. The highest flexural and tensile strengths are 80 and 35 MPa, respectively. The functionalized CPC also exhibits higher hardness and better electrical properties than as-produced CPC. Thus, functionalization with CNTs and Graphite enable the reinforcement and formation electrical conducting networks between metal- and carbon-based fillers within a polymer matrix.  相似文献   

3.
This paper reports the alignment of multi-walled carbon nanotubes (MWCNTs) in an epoxy matrix as a result of DC electric fields applied during composite curing. Optical microscopy and polarized Raman spectroscopy are used to confirm the CNT alignment. The alignment of CNTs gives rise to much improved electrical conductivity, elastic modulus and quasi-static fracture toughness compared to those with CNTs of random orientation. An extraordinarily low electrical percolation threshold of about 0.0031 vol% is achieved when measured along the alignment, which is more than one order of magnitude lower than 0.034 vol% with random orientation or that measured perpendicular to the aligned CNTs. The examination of the fracture surfaces identifies pertinent toughening mechanisms in aligned CNT composites, namely crack tip deflection and CNT pullout. The significance of this paper is that the technique employed here can tailor the physical, mechanical and fracture properties of bulk nanocomposites even at a very low CNT concentration.  相似文献   

4.
Carbon nanotubes (CNTs) were used as an in situ sensor to detect the initiation of micro-cracks and their accumulation in fiber-reinforced polymer composites. The breakage of the electrically conductive networks formed by CNTs throughout the polymer matrix when dispersed in composites enables the micro-cracks to be sensed. This methodology was applied to three-dimensional (3D) braided composites with the aim of investigating the feasibility of detecting their matrix failure and analyzing their damage behavior. Tensile specimens were prepared using 3D braided ultra-high molecular weight polyethylene (UHMWPE) preforms and vinyl ester containing multi-walled CNTs (0.5 wt%) via vacuum-assisted resin transfer molding (VARTM). The electrical resistance of the composites was then measured during tensile testing, while their internal structures were analyzed using X-ray computer tomography (CT), demonstrating that the CNTs dispersed in the matrix enable micro-cracks to be sensed and the damage modes of the 3D braided composites to be analyzed. Finally, four critical strain levels that can classify the damage modes were identified from the change of the electrical resistance of the 3D braided composites.  相似文献   

5.
The goal of this work is to study the effect of high magnetic pulses on electrical property of carbon nanotube–polypyrrole (CNT–PPy) composites with different CNT concentrations. CNT–PPy composites are produced in fractions of 1, 5 and 9 wt%. During the polymerization process, the CNTs are homogeneously dispersed throughout the polymer matrix in an ultrasonic bath. Nanocomposite rods are prepared. After exposure to 30 magnetic pulses, the resistivity of the rods is measured. The surface conductivity of thin tablets of composites is studied by 4-probe technique. The magnitude of the pulsed magnetic field is 10 Tesla with time duration of 1.5 ms. The results show that after applying 30 magnetic pulses, the electrical resistivity of the composites decreases depending on the concentration of CNTs in the composites. The orientation of CNTs is probed by atomic force microscopy (AFM) technique. AFM images approved alignment of CNT–polymer fibres in the magnetic field. We found that the enhancement in the electrical properties of CNT–PPy composites is due to rearrangement and alignment of CNTs in a high magnetic field. The stability of nano-composites is studied by Fourier transform infrared spectroscopy.  相似文献   

6.
Non-conductive polymers filled with conductive carbon nanotubes (CNTs) often do not show detectable conductivity due to poor dispersion of carbon nanotubes in the polymer matrix and the lack of conductive networks formed from CNTs. In this work, we attempted two ways to improve the dispersion of multi-walled carbon nanotubes (MWCNTs) in a polypropylene (PP) matrix: chemical modification of MWCNTs and addition of a master batch as a compatibilizer, followed by melt blending using a micro-compounder. The relationship between the dispersion state of MWCNTs and the electrical conductivity of the CNTs/PP composites have been investigated by controlling several factors such as CNTs modification, compatibilization by a master batch, melt mixing, and post-heat treatment. The enhanced interfacial adhesion between the CNTs and the polymer could improve the dispersion of CNTs but it could also reduce the electrical conductivity of the composites. Meanwhile, it is interestingly found that the post-heat treatment could increase the conductivity remarkably due to the connection of CNTs into networks. Thus, it is concluded that the balance between dispersion of CNTs and the formation of conductive networks plays an important role in enhancing the electrical conductivity of composites.  相似文献   

7.
制备了低逾渗值的超高分子量聚乙烯(UHMWPE)/多壁碳纳米管(CNTs)导电复合材料,CNTs分布于UHMWPE粒子的表面和界面处。研究了UHMWPE/CNTs复合材料的温度电阻行为,发现在基体熔点附近,电阻急剧增加,并达到一最大值,然后电阻开始下降,体现负温度电阻效应(NTC)。分析了复合材料电阻松弛时间的升温速率的依赖性,结果表明,升温速率越快,电阻的松弛时间越短。  相似文献   

8.

In this research, the thermoelastic response of unidirectional carbon fiber (CF)-reinforced polymer hybrid composites containing carbon nanotubes (CNTs) are analyzed using a physics-based hierarchical micromechanical modeling approach. The developed model consists of a unit cell-based scheme along with the Eshelby method which can consider random orientation, random distribution, directional behavior, non-straight shape of CNTs and interphase region generated due to the non-bonded van der Waals interaction between a CNT and the polymer matrix. The predictions are compared with the experimental data available in the literature and a quite good agreement is pointed out for the fibrous polymer composite, CNT-polymer nanocomposite and fiber/CNT-polymer hybrid composite systems. The influences of several factors, including volume fraction, aspect ratio, off-axis angle and arrangement type of CFs as well as CNT volume fraction on the thermoelastic behavior of CF/CNT-polymer hybrid composites are examined in detail. The results indicate that the transverse CTE of a unidirectional CF-reinforced composite is significantly improved due to the addition of CNTs, while the hybrid composite CTE in the longitudinal direction is negligibly affected by the CNTs. Also, it is found that the role of CNT in the hybrid composite thermoelastic behavior becomes more prominent as the CF aspect ratio decreases.

  相似文献   

9.
A model for carbon nanotube (CNT)/polymer composite conductivity is developed, considering the effect of inter-tube tunnelling through the polymer. The statistical effects of inter-tube distance and alignment on the tunnelling are investigated through numerical modelling, to highlight their role in the conductance and piezoresistance of the composite film. The impact of critical parameters, including the concentration, alignment and aspect ratio of the CNTs and the tunnelling barrier height of the polymer is statistically evaluated using a large number of randomly generated CNT/polymer composite films. A numerical model is presented for the tunnelling resistance as a function of CNT concentration and polymer properties, which provides good agreement with the reported conductance in the literature. In particular, for a low concentration of CNTs close to the percolation threshold, we demonstrate how tunnelling dominates the conductance properties and leads to significant increase in the piezoresistance of the composite. This is important for gaining insight into the optimum concentration and alignment of the CNTs in the composite film for applications such as strain sensors, anisotropic conductive films, transparent electrodes and flexible electronics.  相似文献   

10.
Poly ether ether ketone (PEEK)/multi-walled carbon nanotubes (MWNTs) nanocomposites were fabricated to characterize and understand the orientation and dispersion of carbon nanotubes (CNTs) in a polymer matrix. A focused-ion-beam (FIB) technique was used for milling the nanocomposite by a focused gallium ion beam, and the MWNTs were carefully observed. The PEEK preferentially disappeared when the Ga+ ion beam milled the composite, and MWNTs were exposed on the surface of composites. Using this method, it is very easy to estimate and directly evaluate the orientation of the MWNTs in the polymer matrix even though they are embedded in the polymer matrix. Transmission electron microscopy (TEM) was employed to characterize the detailed position of the nanotubes in the PEEK matrix.  相似文献   

11.
Alignment of pristine carbon nanotubes (P-CNTs) and fluorinated carbon nanotubes (F-CNTs) in nylon-6 polymer composite fibers (PCFs) has been achieved using a single-screw extrusion method. CNTs have been used as filler reinforcements to enhance the mechanical and thermal properties of nylon-6 composite fibers. The composites were fabricated by dry mixing nylon-6 polymer powder with the CNTs as the first step, then followed by the melt extrusion process of fiber materials in a single-screw extruder. The extruded fibers were stretched to their maxima and stabilized using a godet set-up. Finally, fibers were wound on a Wayne filament winder machine and tested for their tensile and thermal properties. The tests have shown a remarkable change in mechanical and thermal properties of nylon-6 polymer fibers with the addition of 0.5?wt% F-CNTs and 1.0?wt% of P-CNTs. To draw a comparison between the improvements achieved, the same process has been repeated with neat nylon-6 polymer. As a result, tensile strength has been increased by 230% for PCFs made with 0.5% F-CNTs and 1% P-CNTs as additives. These fibers have been further characterized by DSC, Raman spectroscopy and SEM which confirm the alignment of CNTs and interfacial bonding to nylon-6 polymer matrix.  相似文献   

12.
A direct process for manufacturing polymer carbon nanotube (CNT)-based composite yarns is reported. The new approach is based on a modified dry spinning method of CNT yarn and gives a high alignment of the CNT bundle structure in yarns. The aligned CNT structure was combined with a polymer resin and, after being stressed through the spinning process, the resin was cured and polymerized, with the CNT structure acting as reinforcement in the composite. Thus the present method obviates the need for special and complex treatments to align and disperse CNTs in a polymer matrix. The new process allows us to produce a polymer/CNT composite with properties that may satisfy various engineering specifications. The structure of the yarn was investigated using scanning electron microscopy coupled with a focused-ion-beam system. The tensile behavior was characterized using a dynamic mechanical analyzer. Fourier transform infrared spectrometry was also used to chemically analyze the presence of polymer on the composites. The process allows development of polymer/CNT-based composites with different mechanical properties suitable for a range of applications by using various resins.  相似文献   

13.
为了充分利用不同导电粒子的导电作用,在炭黑(CB)/聚丙烯(PP)导电复合体系中引入了多壁碳纳米管(CNTs)。研究发现:引入的CNTs分散在CB粒子间起到“桥梁”作用,使体系的导电性能得到明显改善,并且CB∶CNTs为19∶1时其协同导电效果最好,该复合体系出现逾渗现象,对应的导电填料体积分数明显降低。在导电填料总体积分数为4.76%时,少量CNTs的引入就可使复合体系的体积电阻率从109Ω·cm下降到105Ω·cm;同时少量的CNTs能明显抑制炭黑/聚丙烯导电复合材料的正温度效应(PTC),使PTC强度从6.10降低到1.48,PTC转变峰温度从166℃升高到174℃。少量的 CNTs可以使PP的结晶温度提高12℃,对PP结晶的成核作用比CB更加明显。复合体系力学性能随导电填料体积分数增加而明显降低,但因为体积电阻率一定时CB-CNTs/PP体系所需导电填料体积分数较CB/PP体系明显降低,因此少量CNTs的引入能够使复合体系的力学性能得到更大程度的保持。  相似文献   

14.
碳纳米管对激光选区熔化成形Al基复合材料的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
基于激光选区熔化(SLM)方式,通过改变扫描速度,制备不同碳纳米管(CNTs,质量分数分别为0、0.5wt%、1.0wt%、1.5wt%、2.0wt%)含量的CNTs/Al复合材料试件,探究不同CNTs含量与激光扫描速度对试件性能的影响。结果表明,CNTs含量小于1.0wt%时,分散效果较好,大部分CNTs以单根状态黏附于Al粉表面;含量大于1.0wt%时,CNTs团聚尺寸增大、数量增多。相同SLM成形工艺下,低CNTs含量的CNTs/Al复合材料试件内部孔隙较少,致密度较高;高CNTs含量的CNTs/Al复合材料试件内部孔隙逐渐增多,致密度降低。激光扫描速度为1 300 mm/s工艺下,随着CNTs质量分数的增加,CNTs/Al复合材料试件硬度呈先上升后下降趋势,在CNTs含量为1.0wt%显微硬度达到最高。CNTs/Al复合材料试件平均晶粒尺寸相对于铝合金试件更加细化,在CNTs含量大于1.0wt%时,尽管晶粒依然细化,但试件致密度降低造成显微硬度下降明显。  相似文献   

15.
Carbon nanotubes (CNTs) are effective fillers/reinforcements regarding improving the properties of polymer. In the present paper, carboxylic acid functionalized CNTs were used to modify epoxy with intent to develop a nanocomposite matrix for hybrid multiscale composites combining benefits of nanoscale reinforcement with well-established fibrous composites. CNTs were dispersed in epoxy by using high energy sonication. At low contents of CNTs, hybrid multiscale composites specimens were manufactured via resin transfer molding (RTM) process. The processibility of CNTs/epoxy systems was explored with respect to their viscosity. The dispersion quality and re-agglomeration behavior of CNTs in epoxy were characterized using optical microscope. A CNTs loading of 0.025 wt% significantly improved the glass transition temperatures (Tg) of the hybrid multiscale composites. Scanning electron microscopy (SEM) was used to examine the fracture surface of the failed specimens. It is demonstrated that the addition of small amount of CNTs (0.025 wt%) to epoxy for the fabrication of multiscale carbon fabric composites via RTM route effectively improves the matrix-dominated properties of polymer based composites. Hybridization efficiency in carbon fiber reinforced composites using CNTs is found to be highly dependent on the changes in the dispersion state of CNTs in epoxy.  相似文献   

16.
CNTs/ UHMWPE composites with a two-dimensional conductive network   总被引:1,自引:0,他引:1  
A low percolation threshold can be achieved for the conductive polymer composites(CPC) materials having a segregated structure in which the conductive particles like carbon black (CB), carbon nanotubes (CNTs), etc. are only located on the interface of the polymer matrix particles instead of being randomly distributed in the whole system. Multiwalled carbon nanotubes (MWNTs) were experienced alcohol-assisted dispersion under ultrasonication and intense mechanical mixing, and only located on the interfaces of the ultrahigh molecular weight polyethylene (UHMWPE) matrix particles to form a segregated structure. The morphological observation and the critical exponent t value obtained from the classical threshold mechanism indicate that the MWNTs/UHMWPE composites form a 2-dimension conductive network, which leads to a very low percolation of 0.072vol%.  相似文献   

17.
采用空间限域强制组装(SCFNA)法制备短切碳纤维-碳纳米管/聚二甲基硅氧烷(SCF-CNTs/PDMS)导电复合材料,研究SCFNA方法制备SCF-CNTs/PDMS复合材料对断面形态变化、导电性能和力学性能的影响。结果表明,通过SCFNA制备的SCF-CNTs/PDMS导电复合材料得到了密实有效的导电网络,由于缩短了导电填料之间的距离,实现了在低浓度填料下增大复合材料的导电性能和力学性能。在填料总量不变的前提下,SCF/PDMS复合材料中添加少量的CNTs,SCF与CNTs之间能形成较好的协同作用。并发现SCF质量分数为8wt%、CNTs质量分数为2wt%的SCF-CNTs/PDMS复合材料与SCF质量分数为10wt%的SCF/PDMS复合材料相比,其导电性能提高了33%,力学性能提高了144%;在SCF/PDMS复合材料中添加较多的CNTs,由于CNTs之间发生团聚现象,SCF-CNTs/PDMS复合材料的导电性能和力学性能均有所下降。SCF质量分数为5wt%、CNTs质量分数为5wt%的SCF-CNTs/PDMS复合材料随着密炼转速由40 r/min逐步增加到80 r/min,CNTs团聚现象有所改善,但是由于扭矩的增大,SCF受到的剪切作用力增大,SCF大部分被搅碎,在导电复合材料中,SCF起主要连接导电网络的作用。因此,SCF质量分数为5wt%、CNTs质量分数为5wt%的SCF-CNTs/PDMS复合材料导电性能反而随着密炼转速的提高而降低。   相似文献   

18.
Highly porous poly(dimethyl siloxane) (PDMS) composites containing cellular-structured microscale graphene foams (GFs) and conductive nanoscale carbon nanotubes (CNTs) are fabricated. The unique three-dimensional, multi-scale hybrid composites with inherent percolation and a high porosity of 90.8% present a remarkable electromagnetic interference shielding effectiveness (EMI SE) of ∼75 dB, a 200% enhancement against 25 dB of the composites made from GFs alone with the same graphene content and porosity. The corresponding specific EMI SE measured against the composite density is 833 dB cm3/g. These values are among the highest for all carbon filler/polymer composites reported thus far. Significant synergy arises from the hybrid reinforcement structure of the composites: the GFs drive the incident microwaves to be attenuated by dissipation of the currents induced by electromagnetic fields, while the CNTs greatly enhance the dissipation of surface currents by expanding the conductive networks and introducing numerous interfaces with the matrix.  相似文献   

19.
Carbon nanotube (CNT) reinforced composites have been identified as promising structural materials for the mechanical components of microelectromechanical systems (MEMS), potentially leading to advanced performance. High alignment and volume fraction of CNTs in the composites are the prerequisites to achieve such desirable mechanical characteristics. In particular, horizontal CNT alignment in composite films is necessary to enable high longitudinal moduli of the composites which is crucial for the performance of microactuators. A practical process has been developed to transfer CNT arrays from vertical to horizontal alignment which is followed by in situ wetting, realign and pressurized consolidation processes, which lead to a high CNT volume fraction in the range of 46-63%. As a result, SU8 epoxy composite films reinforced with horizontally aligned CNTs and a high volume faction of CNTs have been achieved with outstanding mechanical characteristics. The transverse modulus of the composite films has been characterised through nanoindentation and the longitudinal elastic modulus has been investigated. An experimental transverse modulus of 9.6 GPa and an inferred longitudinal modulus in the range of 460-630 GPa have been achieved, which demonstrate effective CNT reinforcement in the SU8 matrix.  相似文献   

20.
We report enhanced thermal and mechanical properties of carbon nanotube (CNT) composites achieved through the use of functionalized CNTs-reactive polymer linkages and three-roll milling. CNTs were functionalized with carboxyl groups and dispersed in a polymer containing an epoxide group resulting in a chemical reaction. To maximize CNT dispersion for practical usage, entangled CNTs are separated and then evenly dispersed within the polymer matrix using three horizontally positioned rotating rolls that apply a strong shear force to the composite. Consequently, accompanying with thermal stability, elastic modulus and storage modulus of such functionalized CNT/polymer composites were increased by 100% and 500% that of the untreated epoxy polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号