首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ce(0.8)Sm(0.2)O(2-delta) and Ce(1-x)Gd(x)O(2-delta) (0.1 < or = x < or = 0.3) nano-sized powders were successfully synthesized by the solution combustion synthesis process. The calcined nanopowders showed a ceria-based single phase with a cubic fluorite structure. In this study, we discussed the structural and electrical characteristics of the sintered Ce(0.8)Sm(0.2)O(2-delta) and Ce(1-x)Gd(x)O(2-delta). We obtained high-quality Ce(0.8)Sm(0.2)O(2-delta) and Ce(1-x)Gd(x)O(2-delta) ceramics with a high density, ultra-fine grain size, and high electrical conductivity even at low sintering temperature using the nanosized powders. The electrical conductivities at 800 degrees C for the Ce(0.8)Sm(0.2)O(2-delta) sintered at 1400 degrees C and the Ce(0.8)Gd(0.2)O(2-delta) sintered at 1350 degrees C were 0.110 and 0.104 Scm(-1), respectively.  相似文献   

2.
We report room temperature ferromagnetism in Ni doped CeO2 nanoparticles using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), and dc magnetization measurements. Nanoparticles of Ce(1-x)Ni(x)O2 (0.0 < or = x < or = 0.10) were prepared by using a co-precipitation method. XRD measurements indicate that all samples exhibit single phase nature with cubic structure and ruled out the presence of any secondary phase. Lattice parameters, strain and particle size calculated from XRD data have been found to decrease with increase in Ni doping. Inter-planner distance measured from HR-TEM images for different Ni doped samples indicate that Ni ions are substituting Ce ions in CeO2 matrix. Magnetization measurements performed at room temperature display weak ferromagnetic behavior of Ce(1-x)Ni(x)O2 (0.0 < or = x < or = 0.10) nanoparticles. Magnetic moment calculated from magnetic hysteresis loop was found to increases with Ni doping up to 7% and then start decreasing with further doping.  相似文献   

3.
Planar sensor of SrTi(1-x)Fe(x)O3-delta, x = 0.4 and 0.6, with perovskite structure was fabricated on alumina substrate using thick film technology. Electrical resistance was measured as a function of thermal treatment conditions, atmosphere, time and temperature. Sensing property was also measured as a function of temperature and the gases of O2, CH4, CO, CO2, NO and NO2. The resistance of SrTi(1-x)Fe(x)O3-delta is lower than those of SrTiO3 or SrFeO3. TCR (temperature coefficient of resistance) of zero over 550 degrees C was measured for the composition of SrTi(1-x)Fe(x)O3-delta after thermal treatment at 1100 degrees C in air atmosphere only. The perovskite SrTi(1-x)Fe(x)O3-delta didn't show any response to CH4, CO, CO2, NO and NO2, but an excellent response and recovery characteristics with oxygen concentration.  相似文献   

4.
Eu(2-x)Sm(x)Sn2O7 (x = 0, 0.1, 0.5, 1.0, 1.5, and 2.0) solid solutions were successfully synthesized by a simple, mild hydrothermal process. The crystal structure, particle size, and chemical composition of the solid solutions were characterized by X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. X-ray diffraction patterns and transmission electron microscopy images reveal that all the products were cubic pyrochlore-type Eu(2-x)Sm(x)Sn2O7 nanocrystals with the diameter of approximately 20 nm. Due to efficient energy transfer from Sm3+ to Eu3+, the Eu(2-x)Sm(x)Sn2O7 (x = 0.1, 0.5, 1.0, and 1.5) nanocrystals exhibited strong 5D0 --> 7F1 photoluminescence emission of Eu3+. The dominant 5D0 --> 7F1 transition revealed good monochromaticity and low distortion of the Eu(2-x)Sm(x)Sn2O7 nanophosphors.  相似文献   

5.
Observation of room temperature ferromagnetism (RTFM) in nano-crystalline Co-incorporated titanium dioxide [Ti(1-x)Co(x)O2(x = 0.05)] thin films prepared by spray pyrolysis technique is reported. While only the anatase phase was detected in as-deposited 5 at.% Co-incorporated TiO2 film, a small amount of rutile phase developed following its vacuum annealing. Besides, no X-ray diffraction peak corresponding to cobalt metal could be detected in any of the two films. SQUID magnetometry of both pristine and Co-doped thin films at room temperature elucidated distinct ferromagnetic behavior in 5 at.% Co-incorporated as-deposited film with saturation moment M(s) approximately 5.6 emu/cm3 which got enhanced up to 11.8 emu/cm3 on subsequent vacuum annealing. From the zero field cooled magnetization measurement we confirmed the absence of Co-metal clusters. The electrical resistivity was found to be greater than 108 omega-cm for the films. Based on the magnetic and electrical measurements the origin of RTFM has been attributed to the bound magnetic polaron (BMP) model.  相似文献   

6.
张宁  吴华强  冒丽  李明明  李亭亭  夏玲玲 《功能材料》2012,43(18):2554-2557,2563
以多壁碳纳米管(MWCNTs)为模板,三乙二醇(TREG)为溶剂,采用微波多元醇法制备MWC-NTs负载组成可控的Ni1-xZnxFe2O4(x=0.4、0.5、0.6)纳米复合材料Ni1-xZnxFe2O4/MWCNTs。其结构和形貌通过XRD、SEM、TEM和EDX进行表征,用VSM测试样品的磁性,并探讨了微波功率、微波时间对镍锌铁氧体负载的影响。结果表明立方系尖晶石结构的单分散Ni1-xZnxFe2O4磁性纳米粒子均匀负载在碳纳米管表面,平均粒径约为6nm;其磁性能与镍锌铁氧体的组成有关,随着Zn含量的增加,饱和磁化强度(Ms)先增大后减小,当x=0.5时Ms达到最大值。矫顽力(Hc)都比较小,在室温下表现为超顺磁性。  相似文献   

7.
Diameter controllable ZnO nanowires have been fabricated by thermal evaporation (vapor transport) with various sizes of gold nanoparticles as catalysts. Diluted magnetic semiconductor (DMS) Zn(1-x)Co(x)O nanowires were then made by high energy Co ion implantation. The as-implanted and the argon-annealed Zn(1-x)Co(x)O nanowires displayed weak ferromagnetism while the high-vacuum annealed nanowires exhibited strong ferromagnetic ordering at room temperature. Size dependent behavior has been observed in the magnetic field and temperature dependences of magnetization. The shrinkage of the nanowire diameter reduced the spontaneous magnetization as well as the hysteresis loops. Field cooled and zero-field cooled magnetization and coercivity measurements were performed between 2 and 300 K to study the evolution of magnetism from the weak to the strong ferromagnetic states. In particular, superparamagnetic features were observed and shown to be intrinsic characteristics of the DMS Zn(1-x)Co(x)O nanowires. The room-temperature spontaneous magnetization of individual Zn(1-x)Co(x)O nanowires was also established by using magnetic force microscope measurements.  相似文献   

8.
This paper reports the effect of Fe doping on the structure and room temperature ferromagnetism of CeO2 nanoparticles. X-ray diffraction and the selective area electron diffraction measurements performed on the Ce(1-x)Fe(x)O2 (0 < or = x < or = 0.07) nanoparticles showed a single-phase nature with a cubic structure, and none of the samples showed the presence of any secondary phase. The mean particle size, which was calculated using transmission electron microscopy, increased with the increase in the Fe content. The DC magnetization measurements that were performed at room temperature showed that all the samples exhibited ferromagnetism. The saturation magnetic moment increased with the increase in the Fe content.  相似文献   

9.
BaSm(x)Fe(12-x)O19 (x < or = 0.4) ferrite nanofibers were prepared by sol-gel method from starting reagents of metal salts and citric acid. These nanofibers were characterized by TG-DTA, FTIR, SEM, XRD and VSM. These results show that the BaSm(x)Fe(12-x)O19 (x < or = 0.4) ferrite nanofibers were obtained subsequently from calcination at 750 degrees C for 1 h. The BaSm(x)Fe(12-x)O19 (x < or = 0.4) microstructure and magnetic property are mainly influenced by chemical composition and heat-treatment temperature. The grain sizes of BaSm0.3Fe11.7O19 ferrite nanofibers are in a nanoscale from 40 nm to 62 nm corresponding to the calcination temperature from 750 degrees C to 1050 derees C. The saturation magnetization of BaSm(x)Fe(12-x)O19 ferrite nanofiber calcined at 950 degrees C for 1 h initially decreases with the Sm content from 0 to 0.3 and then increases with a further Sm content, while the coercivity exhibits a continuous increase from 348 kA x m(-1) (x = 0) to 427 kA x m(-1) (x = 0.4). The differences of magnetic properties are attributed to lattice distortion and enhancement for the anisotropy energy.  相似文献   

10.
We have successfully synthesized large-scale aggregative flowerlike Zn1-xCo(x)O (0.0 < or = x < or = 0.07) nanostructures, consisting of many branches of nanorods at different orientations with diameter within 100-150 nm (tip diameter approximately 50 nm) and length of approximately 1 microm. The rods were prepared using Zinc nitrate, cobalt nitrate and KOH in 180 Watt microwave radiation for short time interval. The synthesized nanorods were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM) and DC magnetization measurements. XRD and TEM results indicate that the novel flowerlike nanostructures are hexagonal with wurtzite structure and Co ions were successfully incorporated into the lattice position of Zn ions in ZnO matrix. The selected area electron diffraction (SAED) pattern reveals that the nanorods are single crystal in nature and preferentially grow along [0 0 1] direction. Magnetic studies show that Zn1-xCo(x)O nanorods exhibit room temperature ferromagnetism. This novel nanostructure could be a promising candidate for a variety of future spintronic applications.  相似文献   

11.
Multiferroic compounds with general formula BiFe(1-x)Ti(x)O3 (x = 0.1, 0.2, 0.3 and 0.35) have been synthesized by conventional solid state reaction method. The effect of Ti substitution on ferroelectric and magnetic properties is studied. From X-ray diffraction (XRD) analysis, a rhombohedral to orthorhombic phase transition for x > 0.3 was observed. From SQUID measurements, a magnetic field induced phase transition has been observed in the BiFe(1-x)T(x)O3 system for x = 0.3. An anomaly in dielectric constant and dielectric loss in the vicinity of antiferromagnetic Néel temperature (T(N)) and a small enhancement in magnetization have been observed. Magnetization measurements above room temperature showed no systematic variation in antiferromagnetic Néel temperatures on Ti substitution. Further it is seen that this system shows the coupling between electric and magnetic dipoles exhibiting magnetoelectric (ME) effect at room temperature and possess high dielectric constant.  相似文献   

12.
Self-assembled ultrathin Ni(x)Fe(1-x)(OH)2 nanodiscs have been synthesized by using a wet-chemistry method. The uniformity and the assembly of Ni(x)Fe(1-x)(OH)2 nanostructures are sensitive to the iron ion concentration in the precursor. An optimum iron concentration of 10% results in the formation of uniform ultrathin Ni(x)Fe(1-x)(OH)2 nanodiscs with a typical side length of 50 nm and a thickness of 10 nm. They are also self-assembled by connecting their (001) facets with in-plane orientation and form a chain-like microstructure. Lattice relaxation is present within several atomic layers at the interfaces between two adjacent nanodiscs, which introduces about 6 degrees misalignment of these nanocrystals. Analytical electron microscopy analysis reveals that the iron additive atoms distribute uniformly in the nanodiscs and they are substitution atoms of Ni atoms. It has been found that the iron species is critical to the formation and assembly of the hexagonal nanodiscs.  相似文献   

13.
In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure.  相似文献   

14.
Plate-like nanoparticles (or nanoplatelets) of Fe(x)Ni(1-x) (x = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6) alloy were successfully synthesized through a simple sonochemical method. The shapes of the alloy nanoplatelets with different Fe atom contents are almost same. Their average diameters are about 50 nm, and their average thicknesses are several nanometers. The obtained Fe(x)Ni(1-x) alloy nanoplatelets are single-phased and have a face-centered cubic (FCC) crystal structure. The lattice constants of the alloy nanoplatelets are larger than the corresponding bulk value and increase with increasing Fe content. The surface oxidation of the alloy nanoplatelets leads to the lattice expansion. The alloy nanoplatelet powders are all ferromagnetic, and their saturation magnetizations are slightly lower than the corresponding bulk value. The saturation magnetic field and the coercivity increase with increasing Fe content. Magnetic hysteresis loops along the directions deviating different angles from the nanoplatelets plane are obviously different, indicating that the easy-axis is in the in-plane direction and the magnetization reversal is incoherent mode. The micromagnetic simulation results for the array composed of thirty-six Fe0.6Ni0.4 alloy nanoplatelets fit well with the measured data.  相似文献   

15.
The structural, magnetic, and electronic structural properties of Ni0.2Cd0.3Fe(2.5-x)Al(x)O4 ferrite nanoparticles were studied via X-ray diffraction (XRD), transmission electron microscopy (TEM), DC magnetization, and near-edge X-ray absorption fine-structure spectroscopy (NEXAFS) measurements. Nanoparticles of Ni0.2Cd0.3Fe(2.5x)Al(x)O4 (0 < or = x < or = 0.4) ferrite were synthesized using the sol-gel method. The XRD and TEM measurements showed that all the samples had a single-phase nature with a cubic structure, and had nanocrystalline behavior. From the XRD and TEM analysis, it was found that the particle size increases with Al doping. The DC magnetization measurements revealed that the blocking temperature increases with increased Al doping. It was observed that the magnetic moment decreases with Al doping, which may be due to the dilution of the sublattice by the doping of the Al ions. The NEXAFS measurements performed at room temperature indicated that Fe exists in a mixed-valence state.  相似文献   

16.
采用柠檬酸盐自燃烧法制备Bi0.9Dy0.1FeO3粉体,溶液法合成xBi0.9Dy0.1FeO3-(1-x)CoFe2O4复合粉体,得到了同时具有铁电性能和铁磁性能的铁酸铋基多铁性材料。研究了粉体的微观结构、铁电性能和铁磁性能。结果表明:当x从0.9减少到0.4,在最佳煅烧温度合成的Bi0.9Dy0.1FeO3-CoFe2O4复合粉体的磁极化强度和剩余极化强度都随着x先增大后减少。Bi0.9Dy0.1FeO3与CoFe2O4复合使铁电性能和铁磁性能均有所提高,当x=0.5时,在700℃的煅烧温度下,获得较好的铁电和铁磁性能,其中Vc=3 268.241Oe,Ms=37.05emμ/g。  相似文献   

17.
We report the crystal structure and magnetic properties of Zn(1-x)Co(x)O?(0≤x≤0.10) nanoparticles synthesized by heating metal acetates in organic solvent. The nanoparticles were crystallized in the wurtzite ZnO structure after annealing in air and in a forming gas (Ar95%?+?H5%). The x-ray diffraction and x-ray photoemission spectroscopy (XPS) data for different Co content show clear evidence for the Co(2+) ions in tetrahedral symmetry, indicating the substitution of Co(2+) in the ZnO lattice. However, samples with x = 0.08 and higher cobalt content also indicate the presence of Co metal clusters. Only those samples annealed in the reducing atmosphere of the forming gas, that showed the presence of oxygen vacancies, exhibited ferromagnetism at room temperature. The air annealed samples remained non-magnetic down to 77?K. The essential ingredient in achieving room temperature ferromagnetism in these Zn(1-x)Co(x)O nanoparticles was found to be the presence of additional carriers generated by the presence of the oxygen vacancies.  相似文献   

18.
A series of Zn1-xCo(x)O epitaxial films around 100 nm with nominal Co concentration from 5% to 15% was prepared by ultra high vacuum (UHV) magnetron reactive sputtering. The optical, magnetic and magneto-transport properties of this series of Zn1-xCo(x)O epitaxial films were investigated, respectively. Resonant Raman spectra indicate the high structural and crystalline quality of these Zn1-xCo(x)O (5 < or = x < or = 15%) films, and confirm a consistent correlation between the substituting Co ions content with the Co doping concentration as well. Paramagnetism, superparamagnetism and ferromagnetism with altered Curie temperature from low temperatures to above room temperatures have been observed in these films by SQUID magnetometry. The broad blocking temperature range indicates the presence of inhomogenous distribution of the magnetic nano-clusters in the superparamagnetic films. However, the magneto-transport behaviors do not strongly respond to the change of the magnetic properties from paramagnetism to ferromagnetism of these Zn1-xCo(x)O films. The lack of efficient coupling between the inhomogenous magnetic nanoclusters and the carrier system in ferromagnetic Zn1-xCo(x)O films highlights the absence of the intrinsic magnetic origins in high structural quality Zn1-xCo(x)O (5 < or = x < or = 15%) epitaxial films. On the other hand, the competition between the spin alignments and the inhomogenous local disorder effect by magnetic ions is suggested to be responsible for the carrier properties and the oberseved magnetoresistance in these Co doping Zn1-xCo(x)O (5 < or = x < or = 15%) epitaxial films.  相似文献   

19.
Magnetoplumbite-type (M-type) SrRE(x)Fe(12-x)O19 (RE = La and Ce, x = 0-1.0) powders were prepared by a citric acid sol-gel technique and subsequent heat treatment. The crystal structure, grain size and magnetic properties were investigated by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and vibrating sample magnetometer (VSM). The XRD patterns show that SrRE(x)Fe(12-x)O19 (RE = La and Ce) are mainly hexagonal magnetic plumbite structure, and the average grain size of 30-40 nm was calculated using the Scherer's equation based on the XRD spectrum. Substitution of Fe ion by the rare earth La ion causes a significant decrease in intrinsic coercivity (Hc) and a slight decrease in saturation magnetization (Ms) as shown in the magnetization hysteresis loops. However, the Hc rises gradually in a small wave pattern with the increase of doping content of the rare earth Ce. The relation between the crystal structure and magnetic properties was also studied in this work.  相似文献   

20.
High rate capable Mn-rich layered Li[Li(x)(Ni0.3Co0.1Mn0.6)1-x]O2 (x = 0.09, 0.11) cathode materials that are fully charged are investigated with respect to stability. Differential scanning calorimetry is used to determine the thermal stability of cathode material compositions together with PVdF binder and a conductive agent by heating from 30 degrees C to 400 degrees C at 10 degrees C/min. In the Li[Li(x)(Ni0.3Co0.1Mn0.6)1-x]O2 (x = 0.09, x = 0.11) cathode materials, the exothermic reaction started at 100 degrees C. Due to thermal runway, a sharp peak was observed at 279.25 degrees C for the material of x = 0.09 with exothermic heat generation of 168.4 J/g. For the Mn-rich cathode material, where x = 0.11, two relatively smaller peaks appeared at 250.72 degrees C and 268.60 degrees C with heat evolution of 71.49 J/g and 93.67 J/g, respectively. These layered cathode materials are thermally stable. The x = 0.09 composition shows huge heat flow occurrence when compared to the x = 0.11. It is concluded from a heat generation analysis that the two Mn-rich cathode materials are thermally stable for lithium rechargeable batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号