首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The control of the heat transfer during the start-up phase of the direct-chill (DC) casting process for aluminum sheet ingots is critical from the standpoint of defect formation. Process control is difficult because of the various inter-related phenomena occurring during the cast start-up. First, the transport of heat to the mold is altered as the ingot base deforms and the sides are pulled inward during the start-up phase. Second, the range of temperatures and water flow conditions occurring on the ingot surface as it emerges from the mold results in the full range of boiling-water heat-transfer conditions—e.g., film boiling, transition boiling, nucleate boiling, and convection—making the rate of transport highly variable. For example, points on the ingot surface below the point of water impingement can experience film boiling, resulting in the water being ejected from the surface, causing a dramatic decrease in heat transfer below the point of ejection. Finally, the water flowing down the ingot sides may enter the gap formed between the ingot base and the bottom block due to butt curl. This process alters the heat transfer from the base of the ingot and, in turn, affects the surface temperature on the ingot faces, due to the transport of heat within the ingot in the vertical direction. A comprehensive mathematical model has been developed to describe heat transfer during the start-up phase of the DC casting process. The model, based on the commercial finite-element package ABAQUS, includes primary cooling via the mold, secondary cooling via the chill water, and ingot-base cooling. The algorithm used to account for secondary cooling to the water includes boiling curves that are a function of ingot-surface temperature, water flow rate, impingement-point temperature, and position relative to the point of water impingement. In addition, a secondary cooling algorithm accounts for water ejection, which can occur at low water flow rates (low heat-extraction rates). The algorithm used to describe ingot-base cooling includes both the drop in contact heat transfer due to gap formation between the ingot base and bottom block (arising from butt curl) as well as the increase in heat transfer due to water incursion within the gap. The model has been validated against temperature measurements obtained from two 711×1680 mm AA5182 ingots, cast under different start-up conditions (nontypical “cold” practice and nontypical “hot” practice). Temperature measurements were taken at various locations on the ingot rolling and narrow faces, ingot base, and top surface of the bottom block. Ingot-based deflection data were also obtained for the two test conditions. Comparison of the model predictions with the data collected from the cast/embedded thermocouples indicates that the model accounts for the processes of water ejection and water incursion and is capable of describing the flow of heat in the early stages of the casting process satisfactorily.  相似文献   

2.
The steady-state thermal problem associated with the direct-chill continuous casting of A6063 aluminum cylindrical ingots is solved using the numerical finite element technique. Excellent correlation is demonstrated between the numerical model and experimental data from ingots cast at two different speeds. By application of the model, effective heat transfer coefficients are calculated as a function of vertical position on the outside surface of the ingot. It is shown that direct application of these coefficients to the modeling of different casting situations will produce substantial errors in the region in which heat transfer is by nucleate boiling. Using theories of nucleate boiling with forced convection and film cooling, a method is developed to calculate the external boundary conditions in the submold region of the ingot, thus making it possible for the first time to define explicitly all of the thermal boundary conditions associated with this casting configuration. These theories are incorporated into the numerical model, and a subsequent simulation shows excellent agreement with experimental data from a third ingot.  相似文献   

3.
Thermal modeling of the direct-chill casting process requires accurate knowledge of (1) the different boundary conditions in the primary mold and secondary direct water-spray cooling regimes and (2) their variability with respect to process parameters. In this study, heat transfer in the primary cooling zone was investigated by using temperature measurements made with subsurface thermocouples in the mold as input to an inverse heat conduction algorithm. Laboratory-scale experiments were performed to investigate the primary cooling of AA3003 and AA4045 aluminum alloy ingots cast at speeds ranging between 1.58 and 2.10 mm/s. The average heat flux values were calculated for the steady-state phase of the casting process, and an effective heat-transfer coefficient for the global primary cooling process was derived that included convection at the mold surfaces and conduction through the mold wall. Effective heat-transfer coefficients were evaluated at different points along the mold height and compared with values from a previously derived computational fluid dynamics model of the direct-chill casting process that were based on predictions of the air gap thickness between the mold and ingot. The current experimental results closely matched the values previously predicted by the air gap models. The effective heat-transfer coefficient for primary cooling was also found to increase slightly with the casting speed and was higher near the mold top (up to 824 W/m2·K) where the molten aluminum first comes in contact with the mold than near the bottom (as low as 242 W/m2·K) where an air gap forms between the ingot and mold because of thermal contraction of the ingot. These results are consistent with previous studies.  相似文献   

4.
The work of the molds intended for casting copper and copper alloys in semicontinuous casters for producing flat billets is considered. It is shown that, to increase the resistance of mold plates, the inner space of the mold should have a taper shape toward the casting direction and take into account the shrinkage of the linear dimensions of the ingot during its motion in the mold. The taper shape increases the intensity and uniformity of heat removal due to close contact between the ingot and the mold inner surface. Testing of new design molds under industrial conditions demonstrates that their resistance increases by a factor of 4.0–4.5. The taper effect of the mold plates is much more pronounced in their narrow faces.  相似文献   

5.
Analysis of the literature on the thermophysical properties of mold flux shows that the measurement results for the thermophysical properties of the slag vary significantly, depending on the method employed. On that basis, a model is proposed for calculating the heat flux in the system consisting of the ingot, the slag film, and the mold. Literature data regarding the properties of the slag and industrial data regarding the mold’s wall temperature are employed here. The proposed model permits investigation of the heat flux as a function of the thickness and physicochemical properties of the mold flux.  相似文献   

6.
The transient nature of the start-up phase is the most critical phase in the direct chill (DC) casting during which the quality of the ingot is questioned. The hot crack and cold crack are the two major problems in the DC casting which originate during and after the solidification. In this work, the thermal, metallurgical, and the mechanical fields of DC casting are modeled. The attention is focused on the mushy state of alloy where the chances are high for the hot tearing. The heat conduction and metallurgical phase-change phenomenon are modeled together in a strongly coupled manner. An isothermal staggered approach is followed to couple the thermal and mechanical parts within a time step. Finite element method is used to discretize the thermal and mechanical field equations. A temperature-based fixed grid method is followed to incorporate the latent heat. The mushy state of alloy is characterized through the Norton-Hoff viscoplastic law and the solid phase is modeled through the Garafalo law. An axisymmetric round billet is simulated. The casting material is considered as AA1201 aluminum alloy. It is found that all the components of stress and viscoplastic strain are maximum at the billet center. Further, the start-up phase stresses and strains are always higher than the steady state phase. Therefore, the chances of hot crack formation are higher during the start-up phase and specifically at the billet center. It is proved that through the ramping procedure, the vulnerability of start-up phase can be lowered.  相似文献   

7.
The flow of heat during the start-up of the direct chill (DC) casting process has been studied with the aim of determining the factors that make this phase of the process prone to face crack generation. Measurements have been made on an AA5182 rolling ingot instrumented with embedded thermocouples placed at key locations in the vicinity of the ingot face near its base. The resulting temperature data have been input to a two-dimensional (2-D) inverse heat-transfer model, developed in part I of this two part study, in order to calculate heat fluxvs surface temperature curves in the direct water impingement regime. The findings indicate that the flow of heat is influenced by changing surface morphology and water flow conditions during the start-up phase. A finite element based simulation of the cast start, employing the calculated flux/surface temperature relations, reveals that the ingot shell at the point of water contact reaches a maximum thickness early in the casting process. The location of this maximum was found to coincide with the position where surface cracks are routinely found to initiate. Further, this maximum was found to also coincide with position at which the rate of deflection of the base of the ingot (“butt-curl”) begins to slow. Based on the heat-flow analysis, it is believed that the face cracks form due to an excessive shell thickness during transient start-up conditions and that their occurrence could be reduced by an optimal combination of water flow rate and casting speed during start-up.  相似文献   

8.
Simulation of convection and macrosegregation in a large steel ingot   总被引:3,自引:0,他引:3  
Melt convection and macrosegregation in casting of a large steel ingot are numerically simulated. The simulation is based on a previously developed model for multicomponent steel solidification with melt convection and involves the solution of fully coupled conservation equations for the transport phenomena in the liquid, mush, and solid. Heat transfer in the mold and insulation materials, as well as the formation of a shrinkage cavity at the top, is taken into account. The numerical results show the evolution of the temperature, melt velocity, and species concentration fields during solidification. The predicted variation of the macrosegregation of carbon and sulfur along the vertical centerline is compared with measurements from an industrial steel ingot that was sectioned and analyzed. Although generally good agreement is obtained, the neglect of sedimentation of free equiaxed grains prevents the prediction of the zone of negative macrosegregation observed in the lower part of the ingot. It is also shown that the inclusion of the shrinkage cavity at the top and the variation of the final solidification temperature due to macrosegregation is important in obtaining good agreement between the predictions and measurements.  相似文献   

9.
陶维瑛 《包钢科技》2001,27(1):24-26,23
薄板坯连铸的发展速度快于常规连铸证明了薄板连铸是一项领先技术,其成功之处在于利用漏斗形结晶器和浸入式水口等技术以保证了拉速和热流的提高,漏斗形结晶器使铸流在结晶器对中的同时也能确保得到有良好润滑性能的保护渣层,因此在坯壳和结晶器壁之间形成了稳定的热流。  相似文献   

10.
An accurate thermofluids model of aluminum direct-chill (DC) casting must solve the heat-transfer equations in the ingot with realistic external boundary conditions. These boundary conditions are typically separated into two zones: primary cooling, which occurs inside the water-cooled mold, and secondary cooling, where a film of water contacts the ingot surface directly. Here, a simple model for the primary cooling boundary condition of the steady-state DC casting process was developed. First, the water-cooled mold was modeled using a commercial computational fluid dynamics (CFD) package, and its effective heat-transfer coefficient was determined. To predict the air-gap formation between the ingot and mold and to predict its effect on the primary cooling, a simple density-based shrinkage model of the solidifying shell was developed and compared with a more complex three-dimensional (3-D) thermoelastic model. DC casting simulations using these two models were performed for AA3003 and AA4045 aluminum alloys at two different casting speeds. A series of experiments was also performed using a laboratory-scale rectangular DC caster to measure the thermal history and sump shape of the DC cast ingots. Comparisons between the simulations and experimental results suggested that both models provide good agreement for the liquid sump profiles and the temperature distributions within the ingot. The density-based shrinkage model, however, is significantly easier to implement in a CFD code and is more computationally efficient.  相似文献   

11.
渣皮的厚度、均匀性和力学性能是影响抽锭电渣钢锭表面质量的主要因素。薄而均匀渣皮是获得良好连铸锭表面质量的关键。文中分析了渣池电流密度分布、结晶器壁附近的热传导条件、渣成分和"高温区"温度变化等因素对渣皮厚度的影响。生产试验表明,通过控制操作温度和渣系成分获得薄而均匀的渣皮,并确保渣系具备长渣形式和适当的高温强度及塑性可得到良好表面质量的电渣连铸锭。  相似文献   

12.
In both continuous casting of steel slabs and direct chill (DC) casting of aluminum alloy ingots, water is used to cool the mold in the initial stages of solidification, and then below the mold, where it is in direct contact with the newly solidified surface of the metal. Water cooling affects the product quality by (1) controlling the heat removal rate that creates and cools the solid shell and (2) generating thermal stresses and strains inside the solidified metal. This work reviews the current state-of-the-art in water cooling for both processes, and draws insights by comparing and contrasting the different practices used in each process. The heat extraction coefficient during secondary cooling depends greatly on the surface temperature of the ingot, as represented by boiling water-cooling curves. Thus, the heat extraction rate varies dramatically with time, as the slab/ingot surface temperature changes. Sudden fluctuations in the temperature gradients within the solidifying metal cause thermal stresses, which often lead to cracks, especially near the solidification front, where even small tensile stresses can form hot tears. Hence, a tight control of spray cooling for steel, and practices such as CO2 injection/pulse water cooling for aluminum, are now used to avoid sudden changes in the strand surface temperature. The goal in each process is to match the rate of heat removal at the surface with the internal supply of latent and sensible heat, in order to lower the metal surface temperature monotonically, until cooling is complete.  相似文献   

13.
Thermosolutal convection patterns and evolution of macrosegregation during solidification of hypereutectic and hypoeutectic NH4CL-H2O binary systems in trapezoidal side-chilled ingots with negative and positive slopes have been numerically investigated. The results have been compared with the base case of solidification in a rectangular ingot. During solidification of NH4CL-70 pct H2O hypereutectic alloy, channels and “A segregates” develop early in the solidification process. When the slope is positive, channels penetrate to a larger distance inside the ingot. Whereas, for negative slope, they are shifted outward toward the chilled wall and are vertically oriented. During solidification of NH4CL10 pct-H2O hypoeutectic alloy, circulation cells which emerge in the narrow melt at later stages of the process are shown to be responsible for the development of V-shaped segregates in the final casting. The final degree of macrosegregation is higher for both positive and negative slopes of the ingot chilled wall compared to the rectangular ingot. deceased.  相似文献   

14.
Modeling of globular equiaxed solidification with a two-phase approach   总被引:1,自引:0,他引:1  
A two-phase volume averaging model for globular equiaxed solidification is presented. Treating both liquid and solid (disperse grains) as separated but highly coupled interpenetrating continua, we have solved the conservation equations for mass, momentum, species mass fraction, and enthalpy for both phases. We also consider the conservation of grain density. Exchange or source terms take into account interactions between the melt and the solid, such as mass transfer (solidification and melting), friction and drag, solute redistribution, release of latent heat, and nucleation. An ingot casting with a near globular equiaxed solidification alloy (Al-4 wt pct Cu) is simulated. Results including grain evolution, melt convection, sedimentation, solute transport, and macrosegregation formation are obtained. The mechanisms producing these results are discussed in detail.  相似文献   

15.
The origins of rhomboidity, longitudinal corner cracks, and breakouts in the continuous casting of steel billets have been investigated with the aid of heat flow and stress analyses of the mold wall. It has been shown that these problems can be linked to intermittent boiling in the cooling water channel, which may occur asynchronously on different faces of the mold. A mechanism based on asynchronous, intermittent boiling and nonsymmetrical cooling of the mold wall has been formulated which explains the influence of billet size, cooling-water velocity, water pressure, cold face roughness, and steel carbon content on the formation of rhomboidity and longitudinal corner cracks. Prevention of intermittent boiling is thereby shown to be a key factor in the production of defect-free billets. This can be accomplished by raising cooling water velocity, increasing mold wall thickness, increasing water back pressure, or roughening the cold face near the meniscus. These measures should also be effective in reducing the frequency of breakouts beneath the mold.  相似文献   

16.
Extensive experimental studies were conducted to quantify the effect of different parameters that can affect the heat transfer from the metal to the mold during the steady-state phase of DC casting. In the first part previously published, the experimental technique was established and results were reported for the effect of gas type (atmosphere within the mold) and the gap between the metal and the mold. The results showed the significant effect of gas thermal conductivity and the metal-mold gap on the mold wall heat transfer coefficient. In this second publication on heat transfer in the mold wall region of a DC casting mold, the results from the effect of casting temperature, gas flow rate, casting alloy, mold material, and the mold insert material on the mold wall heat transfer coefficient are described. The experiments reported in the current paper show that these additional factors tested do not affect the heat flux through the mold wall to the same extent as the gap size or the gas type. The heat transfer coefficient changes by less than 5 pct when casting temperature is changed by ±25 K, less than 15 pct when the gas flow rate within the metal-mold gap flows at up to 3 LPM, and approximately 30 pct when the mold material is changed from stainless steel to AA601 to copper. Similar results were obtained when different insert materials were used. These results are explained with the help of an electrical analogy of heat transfer and are consistent with the heat transfer theory.  相似文献   

17.
A method for determining the temperature dependence of heat transfer in the direct chill (DC) water regime of the DC casting process has been developed. The technique uses as input the data acquired from one embedded thermocouple and involves the application of one-dimensional (1-D) and two-dimensional (2-D) finite element based heat conduction models in succession. The technique has been verified using hypothetical temperature data obtained from a transient casting simulation conducted with a known, idealized, heat flux profile. The results of the comparison indicate that the technique converges to the applied heat flux profile in approximately 12 seconds process simulation time; thus, it is suitable for investigation of the flow of heat during the start-up phase of the process. The accuracy of the technique was found to be satisfactory with thermocouples placed up to a depth of approximately 10 mm below the face of the ingot. The analysis of industrial thermocouple data, the suggested mechanism for crack formation during the start-up, and the remedial action are presented in part II.  相似文献   

18.
为了分析冷却水的供水工艺对结晶器铜壁和冷却水温度场的影响,基于结晶器铜壁热电偶实测温度,构建铸坯/铜壁传热反问题和铜壁/冷却水正问题数学模型,采用ANSYS建立铸坯/铜壁/冷却水数值分析模型,对薄板坯结晶器温度场进行耦合传热分析,解析不同冷却工艺对高速薄板坯连铸结晶器内传热行为的影响.结果表明,水缝内冷却水流动方向对铜...  相似文献   

19.
A coupled finite-element model, CON2D, has been developed to simulate temperature, stress, and shape development during the continuous casting of steel, both in and below the mold. The model simulates a transverse section of the strand in generalized plane strain as it moves down at the casting speed. It includes the effects of heat conduction, solidification, nonuniform superheat dissipation due to turbulent fluid flow, mutual dependence of the heat transfer and shrinkage on the size of the interfacial gap, the taper of the mold wall, and the thermal distortion of the mold. The stress model features an elastic-viscoplastic creep constitutive equation that accounts for the different responses of the liquid, semisolid, delta-ferrite, and austenite phases. Functions depending on temperature and composition are employed for properties such as thermal linear expansion. A contact algorithm is used to prevent penetration of the shell into the mold wall due to the internal liquid pressure. An efficient two-step algorithm is used to integrate these highly nonlinear equations. The model is validated with an analytical solution for both temperature and stress in a solidifying slab. It is applied to simulate continuous casting of a 120 mm billet and compares favorably with plant measurements of mold wall temperature, total heat removal, and shell thickness, including thinning of the corner. The model is ready to investigate issues in continuous casting such as mold taper optimization, minimum shell thickness to avoid breakouts, and maximum casting speed to avoid hot-tear crack formation due to submold bulging.  相似文献   

20.
Hydrodynamic and thermal fields were studied in liquid aluminum circulating in a specially built parallelepipedic ingot mold. Fluid flow could be produced either by using an electromagnetic linear motor or by natural convection effects. Velocity measurements were performed using a magnetodynamic probe during steady state flow experiments. A theoretical model of heat transfer and fluid flow was developed and used to solve simultaneously Navier-Stokes and energy balance equations. The comparison of theoretical and experimental results is satisfactory regarding general distribution of velocity and temperature. It gives a better understanding of the effects of fluid flow in the melt produced either by external stirring or by natural convection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号