首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
齐孟雷 《工具技术》2014,48(8):55-58
以面铣刀刀片磨损为研究对象,结合类神经网络系统建构高速数控铣削加工的预测模型。以加工参数为模型输入条件,刀腹磨耗为输出条件。采用多因素试验方法,选择切削速度、进给速度、切削深度三个试验参数,利用直交表式的试验计划法设计试验点。依照试验点铣削工件后再测量刀具加工后的刀腹磨耗量,进而求得倒传递网络所需的36组训练范例与11组验证数据。刀腹磨耗预测模式是利用类神经网络中的倒传递网络原理,以田口法求得倒传递网络参数的最优值。试验结果显示,刀腹磨耗随着切削速度、进给速度、切削深度增加而上升。铣削模具钢后,刀具磨耗预测值的平均误差为4.72%,最大误差为11.43%,最小误差为0.31%。整体而言,类神经网络对于铣削加工可进行有效预测。  相似文献   

2.
基于进化神经网络的刀具寿命预测   总被引:1,自引:0,他引:1  
为预测道具寿命,引入人工神经网络技术,建立了刀具寿命预测神经网络模型,同时对切削参数进行优化选择.在刀具寿命预测中,针对反向传播算法存在收敛速度慢、容易陷入局部极小值及全局搜索能力弱等缺陷,采用遗传算法训练反向传播神经网络,设计了进化神经网络的学习算法.实验和仿真结果表明:基于进化计算的反向传播神经网络可以克服单纯使用反向传播网络易陷入局部极小值等难题,刀具寿命的预测精度较高,从而为刀具需求计划制定、刀具成本核算,以及切削参数制定提供理论依据,节约了制造执行系统中的生产成本.  相似文献   

3.
In this article, mechanics of boring process on cast iron automotive engine cylinders is explored experimentally. In order to shorten the boring cycle time and to improve quality of the cylinder holes, effects of various cutting conditions as spindle speed, feedrate, inserts, and coatings are investigated. Real-time cutting forces are measured with dynamometer during the process. Surface roughness on the engine cylinders, flank, and crater tool wears are measured and compared in various cutting conditions. It is concluded that by selecting proper cutting conditions, cutting forces can be controlled below a threshold value, cycle time can be shortened, tool life and part quality can be increased; therefore, the cost of automotive engine boring process can be reduced significantly.  相似文献   

4.
对一般BP算法的激励函数、误差函数等进行了改进,将梯度下降法与遗传算法相结合来训练BP网络,并在此基础上,建立了镗孔加工的人工神经网络预报模型,实验结果表明,该模型能较好地对镗孔加工过程中的尺寸进行预测。  相似文献   

5.
车削过程切削力的计算机数值仿真   总被引:1,自引:0,他引:1  
切削力是表征切削过程最重要特征的物理量,其动态变化将直接影响加工过程中刀具与工件的相对位移、刀具磨损和表面加工质量等,所以对切削力建模是进行加工过程物理仿真研究的基础。因此在基于实时工况的切削实验研究基础上,考虑切削参数的因素,利用BP(back pmpagation)神经网络建立车削过程中的切削力的仿真模型。通过大量的样本训练,使神经网络能够对切削力进行较准确地数值仿真。  相似文献   

6.
In this paper, two different evolutionary algorithm-based neural network models were developed to optimise the unit production cost. The hybrid neural network models are, namely, genetic algorithm-based neural network (GA-NN) model and particle swarm optimization-based neural network (PSO-NN) model. These hybrid neural network models were used to find the optimal cutting conditions of Ti[C,N] mixed alumina-based ceramic cutting tool (CC650) and SiC whisker-reinforced alumina-based ceramic cutting tool (CC670) on machining glass fibre-reinforced plastic (GFRP) composite. The objective considered was the minimization of unit production cost subjected to various machine constraints. An orthogonal design and analysis of variance was employed to determine the effective cutting parameters on the tool life. Neural network helps obtain a fairly accurate prediction, even when enough and adequate information is not available. The GA-NN and PSO-NN models were compared for their performance. Optimal cutting conditions obtained with the PSO-NN model are the best possible compromise compared with the GA-NN model during machining GFRP composite using alumina cutting tool. This model also proved that neural networks are capable of reducing uncertainties related to the optimization and estimation of unit production cost.  相似文献   

7.
A neural network method is presented for predicting cutting-force-induced errors in real-time during turning operations based on the estimated cutting forces. Workpiece errors can be considerably affected by the deflections of the machine–workpiece–tool system. A model of the elastic deflections of the machine–workpiece–tool system due to the cutting force in turning developed. A novel radial basis function (RBF) neural network is used to map the relationship between the cutting-force components (radial, axial and tangential) and the consequent dimensional deviation of the finished parts caused by the combined deflections of the machine–workpiece–tool system. Cutting tests were performed on a two-axis CNC turning centre and the experimental results showed that the prediction accuracy of the maximum diameter error of the workpiece was within 15%. The trained RBF neural network was able to predict the cutting force induced error in real-time during turning.  相似文献   

8.
Micro scale machining process monitoring is one of the key issues in highly precision manufacturing. Monitoring of machining operation not only reduces the need of expert operators but also reduces the chances of unexpected tool breakage which may damage the work piece. In the present study, the tool wear of the micro drill and thrust force have been studied during the peck drilling operation of AISI P20 tool steel workpiece. Variations of tool wear with drilled hole number at different cutting conditions were investigated. Similarly, the variations of thrust force during different steps of peck drilling were investigated with the increasing number of holes at different feed and cutting speed values. Artificial neural network (ANN) model was developed to fuse thrust force, cutting speed, spindle speed and feed parameters to predict the drilled hole number. It has been shown that the error of hole number prediction using a neural network model is less than that using a regression model. The prediction of drilled hole number for new test data using ANN model is also in good agreement to experimentally obtained drilled hole number.  相似文献   

9.
In manufacturing environment prediction of surface roughness is very important for product quality and production time. For this purpose, the finite element method and neural network is coupled to construct a surface roughness prediction model for high-speed machining. A finite element method based code is utilized to simulate the high-speed machining in which the cutting tool is incrementally advanced forward step by step during the cutting processes under various conditions of tool geometries (rake angle, edge radius) and cutting parameters (yielding strength, cutting speed, feed rate). The influences of the above cutting conditions on surface roughness variations are thus investigated. Moreover, the abductive neural networks are applied to synthesize the data sets obtained from the numerical calculations. Consequently, a quantitative prediction model is established for the relationship between the cutting variables and surface roughness in the process of high-speed machining. The surface roughness obtained from the calculations is compared with the experimental results conducted in the laboratory and with other research studies. Their agreements are quite well and the accuracy of the developed methodology may be verified accordingly. The simulation results also show that feed rate is the most important cutting variable dominating the surface roughness state.  相似文献   

10.

During boring process, tool vibration is a major concern due to its overhanging length, which results in high cutting force, poor surface finish, and increase in tool wear. To suppress tool vibration and improve cutting performance, a novel technique in rheological fluid was designed and developed. In this work, a magnetorheological elastomer (MRE) was developed, and parameters, such as piston location, current intensity, and coil winding direction, were considered. Cutting experiments were conducted to obtain a set of parameters that can efficiently control vibration during boring of hardened AISI 4340 steel. Taguchi method was used to optimize the cutting condition, and findings show that the cutting tool embedded with the MRE reduced tool vibration and effectively increased cutting performance.

  相似文献   

11.
Tool wear prediction plays an important role in industry for higher productivity and product quality. Flank wear of cutting tools is often selected as the tool life criterion as it determines the diametric accuracy of machining, its stability and reliability. This paper focuses on two different models, namely, regression mathematical and artificial neural network (ANN) models for predicting tool wear. In the present work, flank wear is taken as the response (output) variable measured during milling, while cutting speed, feed and depth of cut are taken as input parameters. The Design of Experiments (DOE) technique is developed for three factors at five levels to conduct experiments. Experiments have been conducted for measuring tool wear based on the DOE technique in a universal milling machine on AISI 1020 steel using a carbide cutter. The experimental values are used in Six Sigma software for finding the coefficients to develop the regression model. The experimentally measured values are also used to train the feed forward back propagation artificial neural network (ANN) for prediction of tool wear. Predicted values of response by both models, i.e. regression and ANN are compared with the experimental values. The predictive neural network model was found to be capable of better predictions of tool flank wear within the trained range.  相似文献   

12.
One of the most important research topics in the area of Intelligent Manufacture Systems (IMS) is the automatic detection of tool breakage, wear of chipping during the cutting process. Sensor-based techniques are available for cutting force measurements, but there are drawbacks in this approach in cost and idle times. This work proposes a sensorless monitoring system for tool monitoring in order to detect breakage and chipping by exploiting the wavelet transform and a neural network. Previous works have made use of these tools for monitoring several machining parameters, but we propose an integrated low-cost approach to detect quickly the changes in the tool integrity for monitoring. The system output produces an accurate detection of the tool integrity that enables the system to prevent damage due to tool breakage. This approach allows for an industrial solution to be developed.  相似文献   

13.
One of the most important research topics in the area of Intelligent Manufacture Systems (IMS) is the automatic detection of tool breakage, wear of chipping during the cutting process. Sensor-based techniques are available for cutting force measurements, but there are drawbacks in this approach in cost and idle times. This work proposes a sensorless monitoring system for tool monitoring in order to detect breakage and chipping by exploiting the wavelet transform and a neural network. Previous works have made use of these tools for monitoring several machining parameters, but we propose an integrated low-cost approach to detect quickly the changes in the tool integrity for monitoring. The system output produces an accurate detection of the tool integrity that enables the system to prevent damage due to tool breakage. This approach allows for an industrial solution to be developed.  相似文献   

14.
以Al7075-T6为加工对象,通过车削试验对PCD刀具车削超硬铝合金的三向动态切削力和表面粗糙度展开研究,建立基于BP神经网络的切削力和表面粗糙度预测模型。结果表明:随着切削用量三要素的变化,切削力变化显著;对于表面粗糙度而言,背吃刀量、进给量和切削速度之间无交互作用;基于L-M优化算法的BP神经网络对样本的拟合度高,且对切削力和表面粗糙度的预测精度高。  相似文献   

15.
为了克服模糊控制动态响应慢和鲁棒性差的缺点,将模糊控制的定性知识表达能力与小波分析优异的局部控制性能和神经网络的定量学习能力相结合,提出了一种模糊小波神经网络自适应控制器,并将其应用于加工过程控制。对变切削深度的铣削加工过程控制的仿真结果表明,基于模糊小波神经网络的加工过程自适应控制,其控制效果优于一般的模糊控制和神经网络控制,具有很好的动、静态性能。该自适应控制器能有效防止刀具损坏和提高加工效率,是一种有效的加工过程控制方法。  相似文献   

16.
基于神经网络的多特征融合刀具磨损量识别   总被引:4,自引:0,他引:4  
采用切削力信号监测钻削过程钻头的磨损量 ,分别从时域、频域提取了切削力信号的均值、方差、峭度系数和特定频段能量作为刀具磨损的特征信号 ,讨论了特征信号随着刀具磨损量增加的变化规律 ,并将各个特征信号构成的特征矢量输入多层反传神经网络进行融合 ,实现钻削过程刀具磨损量的智能识别。试验结果表明该方法能有效实现多特征融合 ,但识别精度和推广能力有待进一步提高  相似文献   

17.
A step towards the in-process monitoring for electrochemical microdrilling   总被引:1,自引:1,他引:0  
The bandsawing as a multi-point cutting operation is the preferred method for cutting off raw materials in industry. Although cutting off with bandsaw is very old process, research efforts are very limited compared to the other cutting process. Appropriate online tool condition monitoring system is essential for sophisticated and automated machine tools to achieve better tool management. Tool wear monitoring models using artificial neural network are developed to predict the tool wear during cutting off the raw materials (American Iron and Steel Institute 1020, 1040 and 4140) by bandsaw. Based on a continuous data acquisition of cutting force signals, it is possible to estimate or to classify certain wear parameters by means of neural networks thanks to reasonably quick data-processing capability. The multi-layered feed forward artificial neural network (ANN) system of a 6?×?9?×?1 structure based on cutting forces was trained using error back-propagation training algorithm to estimate tool wear in bandsawing. The data used for the training and checking of the network were derived from the experiments according to the principles of Taguchi design of experiments planned as L 27. The factors considered as input in the experiment were the feed rate, the cutting speed, the engagement length and material hardness. 3D surface plots are generated using ANN model to study the interaction effects of cutting conditions on sawblade. The analysis shows that cutting length, hardness and cutting speed have significant effect on tooth wear, respectively, while feed rate has less effect. In this study, the details of experimentation and ANN application to predict tooth wear have been presented. The system shows that there is close match between the flank wear estimated and measured directly.  相似文献   

18.
In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR). After the advent of high-speed milling(HSM) pro cess, lots of experimental and theoretical researches have been done for this purpose which mainly emphasized on the optimization of the cutting parameters. It is highly beneficial to convert raw data into a comprehensive knowledge-based expert system using fuzzy logic as the reasoning mechanism. In this paper an attempt has been presented for the extraction of the rules from fuzzy neural network(FNN) so as to have the most effective knowledge-base for given set of data. Experiments were conducted to determine the best values of cutting speeds that can maximize tool life for different combinations of input parameters. A fuzzy neural network was constructed based on the fuzzification of input parameters and the cutting speed. After training process, raw rule sets were extracted and a rule pruning approach was proposed to obtain concise linguistic rules. The estimation process with fuzzy inference showed that the optimized combination of fuzzy rules provided the estimation error of only 6.34 m/min as compared to 314 m/min of that of randomized combination of rules.  相似文献   

19.
Traditional online or in-process surface profile (quality) evaluation (prediction) needs to integrate cutting parameters and several in-process factors (vibration, machine dynamics, tool wear, etc.) for high accuracy. However, it might result in high measuring cost and complexity, and moreover, the surface profile (quality) evaluation result can only be obtained after machining process. In this paper, an approach for surface profile pre-evaluation (prediction) in turning process using cutting parameters and radial basis function (RBF) neural networks is presented. The aim was to only use three cutting parameters to predict surface profile before machining process for a fast pre-evaluation on surface quality under different cutting parameters. The input parameters of RBF networks are cutting speed, depth of cut, and feed rate. The output parameters are FFT vector of surface profile as prediction (pre-evaluation) result. The RBF networks are trained with adaptive optimal training parameters related to cutting parameters and predict surface profile using the corresponding optimal network topology for each new cutting condition. It was found that a very good performance of surface profile prediction, in terms of agreement with experimental data, can be achieved before machining process with high accuracy, low cost, and high speed. Furthermore, a new group of training and testing data was also used to analyze the influence of tool wear on prediction accuracy.  相似文献   

20.
谢英星 《工具技术》2017,51(5):122-126
为有效控制和预测高硬度模具钢加工的表面质量和加工效率,通过设计正交切削试验,研究了在不同切削参数组合(主轴转速、进给速度、轴向切削深度和径向切削深度)及冷却润滑方式条件下、Ti Si N涂层刀具对模具钢SKD11(62HRC)的高速铣削。应用BP神经网络原理建立表面粗糙度预测模型,并进行试验验证其准确性。研究表明,在不同加工条件下,基于BP神经网络模型建立的涂层刀具铣削模具钢SKD11表面粗糙度模型有较好的预测精度,其预测误差在3.45%-6.25%之间,对于模具制造企业选择加工工艺参数、控制加工质量和降低加工成本有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号