首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The use of GaInP/GaAs heterojunction bipolar transistors (HBTs) for integrated circuit applications is demonstrated. The discrete devices fabricated showed excellent DC characteristics with low Vce offset voltage and very low temperature sensitivity of the current gain. For a non-self-aligned device with a 3-μm×1.4-μm emitter area, fT was extrapolated to 45 GHz and fmax was extrapolated to 70 GHz. The measured 1/f noise level was 20 dB better than that of AlGaAs HBTs and comparable to that of low-noise silicon bipolar junction transistors, and the noise bump (Lorentzian component) was not observed. The fabricated gain block circuits showed 8.5 dB gain with a 3-dB bandwidth of 12 GHz, and static frequency dividers (divide by 4) were operable up to 8 GHz  相似文献   

2.
p-n-p InP/InGaAs heterojunction bipolar transistors (HBTs) are reported for the first time. The transistors, grown by metal organic molecular beam epitaxy (MOMBE), exhibited maximum DC current gain values up to 420 for a base doping level of 4×1018 cm-3 . Small-signal measurements on self-aligned transistors with 3-μm×8-μm emitter area indicated the unity gain cutoff frequency value of 10.5 GHz and the inferred maximum frequency of oscillation of 25 GHz. The results clearly demonstrate the feasibility of complementary integrated circuits in the InP material system  相似文献   

3.
A new basic ohmic contact technology for AlGaAs/GaAs heterojunction bipolar transistors (HBTs) is presented. The effect of the device parameters on the high-frequency performance of HBT ICs for 10-Gb/s systems is analyzed, and it is shown that, at a cutoff frequency (fT) of 40 GHz or more, reducing base resistance or collector capacitance is more effective than increasing fT for obtaining high-frequency performance. A process is developed for fabricating base electrodes with a very low ohmic contact resistivity, ~10-7 Ω-cm2, by using a AuZn/Mo/Au alloy, which provides the required high performance. Self-aligned AlGaAs/GaAs HBTs, with a 2.5-μm×5-μm emitter, using a AuZn/Mo/Au alloy base metal and an undoped GaAs collector, are shown to have an fT and a maximum oscillation frequency of about 45 and 70 GHz, respectively, at 3.5 mA. An AGC amplifier with a 20-dB gain and a bandwidth of 13.7 GHz demonstrates stable performance  相似文献   

4.
AlGaAs/GaAs collector-up heterojunction bipolar transistors (HBTs) with a heavily carbon-doped base layer were fabricated using oxygen-ion implantation and zinc diffusion. The high resistivity of the oxygen-ion-implanted AlGaAs layer in the external emitter region effectively suppressed electron injection from the emitter, allowing collector current densities to reach values above 105 A/cm 2. For a transistor with a 2-μm×10-μm collector, fT was 70 GHz and fmax was as high as 128 GHz. It was demonstrated by on-wafer measurements that the first power performance of collector-up HBTs resulted in a maximum power-added efficiency of as high as 63.4% at 3 GHz  相似文献   

5.
GaInP/GaAs heterojunction bipolar transistors (HBTs) have been fabricated and these devices exhibit near-ideal I-V characteristics with very small magnitudes of the base-emitter junction space-charge recombination current. Measured current gains in both 6-μm×6-μm and 100-μm×100-μm devices remain constant for five decades of collector current and are greater than unity at ultrasmall current densities on the order of 1×10-6 A/cm2. For the 6-μm×6-μm device, the current gain reaches a high value of 190 at higher current levels. These device characteristics are also compared to published data of an abrupt AlGaAs/GaAs HBT having a base layer with similar doping level and thickness  相似文献   

6.
六边形发射极的自对准InGaP/GaAs异质结具有优异的直流和微波性能.采用发射极面积为2μm×10μm的异质结双极型晶体管,VCE偏移电压小于150mV,膝点电压为0.5V(IC=16mA),BVCEO大于9V,BVCBO大于14V,特征频率高达92GHz,最高振荡频率达到105GHz.这些优异的性能预示着InGaP/GaAs HBT在超高速数字电路和微波功率放大领域具有广阔的应用前景.  相似文献   

7.
The diffusion coefficient (Dh) and a value for the collector velocity (vh) of holes in AlGaAs/GaAs P-n-p HBTs (heterojunction bipolar transistors) were obtained from high-frequency measurements on structures with different base and collector widths. Quantities for Dh and v h of 5.6 cm2/s and 5.5×106 cm/s, respectively, were obtained by plotting the total emitter-collector delay versus inverse emitter current and extrapolating the data to infinite emitter current to obtain the base and collector transit delays. An ft and fmax as high as 15 and 29 GHz, respectively, were obtained for non-self-aligned (1-μm emitter mesa/base contact separation) devices with a 2.6-μm×10-μm emitter  相似文献   

8.
严北平  张鹤鸣  戴显英 《电子学报》2000,28(11):132-134
利用微空气桥隔离和自对准技术成功地研制出了自对准结构的AlGaAs/GaAs异质结双极晶体管.器件展现出良好的直流和高频特性.对于发射极面积为2μm×15μm的器件,直流电流增益大于10,失调电压(Offsetvoltage)200mV;电流增益截止频率fT大于30GHz,最高振荡频率fmax约为50GHz.  相似文献   

9.
Collector-up InGaAs/InAlAs/InP heterojunction bipolar transistors (HBTs) were successfully fabricated, and their DC and microwave characteristics measured. High collector current density operation (Jc>30 kA/cm2) and high base-emitter junction saturation current density (J0>10-7 A/cm2) were achieved. A cutoff frequency of f t=24 GHz and a maximum frequency of oscillation f max=20 GHz at a collector current density of J0 =23 kA/cm2 were achieved on a nominal 5-μm×10-μm device  相似文献   

10.
Graded-base AlGaAs/InGaAs collector-up heterojunction bipolar transistors (C-up HBTs) were successfully fabricated using a novel selective area regrowth process to reduce the base resistance and their dc and microwave performances were evaluated. The base is compositionally graded to provide a quasi-built-in field which decreases the base transit time for high-frequency response and increases the base transport factor at low-temperature operation. A unity-gain cutoff frequency fT=55 GHz and a maximum frequency of oscillation f MAX=74 GHz for the C-up n-p-n HBT, and an fT=48 GHz and an fMAX= 39 GHz for the C-up p-n-p HBT were obtained for devices with a 5-μm×10-μm collector area. The nonself-aligned C-up HBT's reported here show great promise for future high-speed C-up complementary bipolar IC's  相似文献   

11.
A fully integrated 6-GHz phase-locked-loop (PLL) fabricated using AlGaAs/GaAs heterojunction bipolar transistors (HBTs) is described. The PLL is intended for use in multigigabit-per-second clock recovery circuits for fiber-optic communication systems. The PLL circuit consists of a frequency quadrupling ring voltage-controlled oscillator (VCO), a balanced phase detector, and a lag-lead loop filter. The closed-loop bandwidth is approximately 150 MHz. The tracking range was measured to be greater than 750 MHz at zero steady-state phase error. The nonaided acquisition range is approximately 300 MHz. This circuit is the first monolithic HBT PLL and is the fastest yet reported using a digital output VCO. The minimum emitter area was 3 μm×10 μm with ft=22 GHz and fmax=30 GHz for a bias current of 2 mA. The speed of the PLL can be doubled by using 1-μm×10-μm emitters in next-generation circuits. The chip occupies a die area of 2-mm×3-mm and dissipates 800 mW with a supply voltage of -8 V  相似文献   

12.
The fabrication and characterization of a new self-aligned HBT utilizing bridged base-electrode technology (BBT) are presented. This new technology simplifies the fabrication process and relaxes the limitations in device size scaling, thus decreasing the emitter size to 1 μm×1 μm. In spite of a large junction periphery area ratio, a good current gain of more than 10 is obtained in an HBT with an emitter size of 1 μm×1 μm. A series of fabricated HBTs shows excellent high-speed performance. The highest values of fT =90 GHz and fmax=63 GHz are obtained in an HBT with an emitter size of 1 μm×5 μm. The realization of HBTs with small emitters and excellent high-frequency characteristics demonstrates the effectiveness of this new technology  相似文献   

13.
The first high power demonstration of an InGaP/GaAs heterojunction bipolar transistor is presented. Multifinger selfaligned HBTs were tested at 3 GHz. A maximum output power of 2.82 W CW was obtained for a 600 mu m/sup 2/ emitter area device (4.7 mW/ mu m/sup 2/ power density) with an attendant gain of 6.92 dB; simultaneously, the device exhibited 55.2% power added efficiency, 69.1% collector efficiency and 8.0*10/sup 4/ A/cm/sup 2/ emitter current density.<>  相似文献   

14.
The authors demonstrate excellent passivation of the extrinsic base surfaces in GaInP/GaAs heterojunction bipolar transistors (HBTs) having small emitter areas. Passivated devices with an area as small as 4×20 μm2 exhibit the highest reported current gain value of 2690 for GaInP/GaAs HBTs, while unpassivated 4×20-μm 2 devices exhibit a current gain of only 500. Measured current gains as a function of collector current density are almost identical for devices with varying emitter widths of 4, 6, 8, 12, 16, and 100 μm. The current gains are also nearly identical for devices with varying passivation ledge widths of 1, 2, 3, and 6 μm. These results are contrasted with those of a previously published study reporting surface passivation for a GaInP/GaAs HBT with a large emitter area  相似文献   

15.
Thermal instability of multi-emitter high-power microwave heterojunction bipolar transistors (HBTs) was eliminated using a novel heat spreading technique that regulates internal device currents to avoid the formation of hot spots. Devices with 2- and 3-μm minimum emitter sizes and no intentional ballast resistors showed unconditionally stable CW operation up to the device electronic limitations. A record 10-mW/μm2 power density was obtained at 10 GHz with 7-dB gain and 60% power-added efficiency. The highest efficiency was 67.2% at 9.3-mW/μm2 power density. It was shown that stable high-power-density operation can be maintained at multiwatt output power levels  相似文献   

16.
采用标准的湿法刻蚀工艺研制出了S波段工作的非自对准AlGaAs/GaAs异质结双极晶体管.对于总面积为8×2μm×10μm的HBT器件,测得其直流电流增益大于10,电流增益截止频率fT大于20GHz,最高振荡频率fmax大于30GHz.连续波功率输出为0.3W,峰值功率附加效率41%.  相似文献   

17.
We report the fabrication of double heterojunction bipolar transistors (DHBTs) with the use of a new quaternary InGaAsN material system that takes advantage of a low-energy band gap E/sub G/ in the base to reduce operating voltages in GaAs-based electronic devices. InGaP/In/sub 0.03/Ga/sub 0.97/As/sub 0.99/N/sub 0.01//GaAs DHBTs with improved band gap engineering at both heterojunctions exhibit a DC peak current gain over 16 with small active emitter area. The use of the lattice-matched In/sub 0.03/Ga/sub 0.97/As/sub 0.99/N/sub 0.01/ (E/sub G/=1.20 eV) base layer allows a significant reduction of the turn-on voltage by 250 mV over standard InGaP/GaAs HBTs, while attaining good high-frequency characteristics with cutoff frequency and maximum oscillation frequency as high as 40 GHz and 72 GHz, respectively. Despite inherent transport limitations at the present time, which penalize peak frequencies, this novel technology provides comparable RF performance to conventional devices with a GaAs control base layer but at much lower operating base-emitter bias conditions. This technical progress should benefit to the next generation of RF circuits using GaAs-based HBTs with lower power consumption and better handling of supply voltages in battery-operated wireless handsets.  相似文献   

18.
AlGaAs emitter heterojunction bipolar transistors (HBTs) are demonstrated to have excellent dc and RF properties comparable to InGaP/GaAs HBTs by increasing the Al composition. Al0.35Ga 0.65As/GaAs HBTs exhibit very high dc current gain at all bias levels, exceeding 140 at 25 A/cm2 and reaching a maximum of 210 at 26 kA/cm2 (L=1.4 μm×3 μm, Rsb=330 Ω/□). The temperature dependence of the peak dc current gain is also significantly improved by increasing the AlGaAs mole fraction of the emitter. Device analysis suggests that a larger emitter energy gap contributes to the improved device performance by both lowering space charge recombination and increasing the barrier to reverse hole injection  相似文献   

19.
High-performance InP/In0.53Ga0.47As metamorphic heterojunction bipolar transistors (MHBTs) on GaAs substrate have been fabricated using InxGa1-xP strain relief buffer layer grown by solid-source molecular beam epitaxy (SSMBE). The MHBTs exhibited a dc current gain over 100, a unity current gain cutoff frequency (fT) of 48 GHz and a maximum oscillation frequency (fMAX) of 42 GHz with low junction leakage current and high breakdown voltages. It has also been shown that the MHBTs have achieved a minimum noise figure of 2 dB at 2 GHz (devices with 5×5 μm 2 emitter) and a maximum output power of 18 dBm at 2.5 GHz (devices with 5×20 μm2 emitter), which are comparable to the values reported on the lattice-matched HBTs (LHBTs). The dc and microwave characteristics show the great potential of the InP/InGaAs MHBTs on GaAs substrate for high-frequency and high-speed applications  相似文献   

20.
Successful operation of submicron-square emitter AlGaAs/GaAs HBTs is demonstrated for the first time by using a fully mesa-structure-type emitter-base junction-area definition method with an AlGaAs hetero-guardring. The hetero-guardring reduces surface recombination current at the emitter-mesa edge to 1.4 μA/μm. This is 1/10 of that for devices without the guardring. Here, dc gains of 20, 26, and 40 are achieved for 0.5 μm×0.5 μm, 0.7 μm×0.7 μm, and 0.9 μm×0.9 μm emitter HBTs, respectively. An fT of 40 GHz, and an fmax of 30 GHz are obtained for 0.9 μm×0.9 μm at a JC of 1.0×105 A/cm2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号