首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells inside the intact organ of Corti were labelled with fluorescent probes reflecting various aspects of structure and function. The dyes were introduced into the perilymphatic space by perfusion of the scala tympani of the temporal bone from the guinea-pig maintained in isolation. The dyes were able to diffuse through the basilar membrane and into the organ of Corti where they were spontaneously absorbed by the sensory and supporting cells. Confocal microscopic observation was made through an opening in the apex of the cochlea. A number of different dyes were used; a carbocyanine dye which stains mitochondria; two styryl dyes which are absorbed by the cell membranes and calcein, a cytoplasmic marker that fluoresces in vital cells. Extracellular space was stained by a cell-impermeant Dextran fluorescein. The most striking finding was that the membrane dyes preferentially stained the sensory cells and neural elements whereas the staining of the supporting cells was faint. The cytoplasmic dye in general stained sensory and supporting cells to the same extent. By tilting the organ, a view could be obtained from the side like a radial section through the organ. Outer and inner hair cells with their sensory hairs, nerve fibres and nerve endings, especially under the inner hair cells, could be seen in profile. Introduction of a high molecular weight Dextran into the endolymphatic space outlined the tectorial membrane which was seen in negative contrast. The simultaneous perfusion with a membrane dye stained the hair cells and their sensory hairs. Merging of the two images gave the possibility to examine, in the living tissue, the cilia to tectorial membrane relationship. Of general interest is the finding that the membrane dyes preferentially stained the sensory and neural elements of the nervous system, represented here by the hair cells and nerve fibres of the inner ear.  相似文献   

2.
Laser scanning confocal microscope (LSCM) enables one to observe both the surface structure and the inner configuration in the same specimen, by its possibility of direct, non-invasive serial optical sectioning of whole mounted specimens. The potential value of LSCM in the field of inner ear morphological study was evaluated. The configuration of upper parts of organ of Corti was observed with the LSCM combined with double-stained fluorescence immunohistochemistry technique. The actin filament of hair cells by phalloidin, and the cytokeratin of supporting cells by monoclonal pan-anticytokeratin antibody. The stereocilia, cuticular plate, and the cuticle-free area of hair cells were well demonstrated. In the same specimen, the head plate of outer pillar cell, the phalangeal apical plate and the phalangeal process of Deiter cells were clearly showed as well. LSCM provide a new tool to the morphological study of organ of Corti.  相似文献   

3.
This study examines the development of the reticular lamina in the Syrian golden hamster postriatally from birth to adulthood at 2 day intervals using the scanning electron microscope. During this period, numerous transitory features emerged whose roles were concerned primarily with the development of the tectorial membrane (TM). The principal findings were as follows. (1) The surface of the developing organ of Corti produced all the fibrous material composing the minor tectorial membrane (mTM) including radial and longitudinal fiber bundles which formed the skeleton of the TM, and spongy, amorphous material which formed its intervening ground substance. (2) Throughout most of the cochlear spiral, radial fiber bundles were seen extending from the microvilli of supporting cells and projecting toward the major tectorial membrane (MTM). In most of the basal turn, but not in the apical turn, these radial bundles were interwoven with longitudinal fiber bundles which emerged from the surface of Hensen's cells. These findings indicate that the architecture of the TM is more complex in the basal turn than in the apex. (3) Increases in the dimensions of the reticular lamina resulted from the emergence of pillar cell headplates and growth in the diameter of hair cells and supporting cells. The emergence of pillar cell headplates was the principal factor contributing to increases in the radial dimension of the reticular lamina. This emergence was most dramatic between 10 and 12 days after birth (DAB) after the mTM completed its growth. Since the mTM appears to be bound medially to the MTM and laterally to the marginal pillars by 10 DAB, it seems likely that the growth of the reticular lamina after 10 DAB causes some stretching of the mTM both radially and longitudinally. (4) Completion of outer hair cell stereocilia growth at 8 DAB was followed by loss of supporting cell attachments of the TM (trabeculae) by 10 DAB, and coincided with the formation of marginal pillars from the third row of supporting cells. It is suggested that the formation of marginal pillars may be required for coupling of the TM to the tips of outer hair cell stereocilia and for induction of radial tension of the mTM. (5) Removal of the marginal pillar attachments occurred following completion of hair cell growth. (6) All structures on the reticular lamina appeared to have adult-like characteristics by 20 DAB.  相似文献   

4.
This study quantitatively characterizes the development of the major morphological features of the organ of Corti during the first 2 weeks postnatal, the period when the cat auditory system makes the transition from being essentially non-functional to having nearly adult-like responses. Four groups of kittens (n = 3) were studied at one day postnatal (P1), P5, P10, P15, and compared to adults. Measurements were made of the organ of Corti at 3 cochlear locations: 20%, 60% and 85% of basilar membrane length from the base cochlear locations which in the adult correspond to best frequencies of approximately 20 kHz, 2 kHz and 500 Hz, respectively. In addition, measurements of basilar membrane length and opening of the tunnel of Corti were made in 20 cochlear specimens from kittens aged P0-P6. Results indicate that: (i) at P0 the basilar membrane has attained adult length, and the tunnel of Corti is open over approximately the basal one-half of the cochlea; (ii) the initial opening of the tunnel of Corti occurs at a site about 4 mm from the cochlear base (best frequency of approximately 25 kHz in the adult cochlea); (iii) the thickness of the tympanic cell layer decreases markedly at the basal 20-kHz location; (iv) the areas of the tunnel of Corti and space of Nuel and the angulation of the inner hair cells (IHC) relative to the basilar membrane all show marked postnatal increases at both the middle and apical locations; (v) IHC are nearly adult-like in length and shape at birth, whereas the OHC (at 2-kHz and 500-Hz locations) undergo marked postnatal changes; (vi) disappearance of the marginal pillars and maturation of the supporting cells are not yet complete by P15.  相似文献   

5.
The presence and distribution of functional, high-affinity receptors for fibroblast growth factors (FGFs) in the neonatal organ of Corti were probed using the intracellular toxin saporin conjugated to basic FGF (FGF-2). FGFs that bind to high-affinity FGF receptors are internalized as part of the normal process of receptor inactivation. The receptor can thus be used for the targeted delivery of molecules conjugated to FGF into the cytoplasm. Incubation of postnatal day 5 (P5) rat organ of Corti cultures with FGF-saporin caused a dose dependent destruction of outer hair cells, Deiters cells and outer pillar cells. Inner hair cells and other cells were unaffected. Organ of Corti cultures at P0 and P10 showed much less damage than at P5. The results suggest that outer hair cells and adjacent supporting cells in the organ of Corti transiently express high-affinity FGF receptors, and that these receptors can mediate the intracellular delivery of bioactive molecules.  相似文献   

6.
The organ of Corti, the sensory epithelium of hearing in mammals, matures postnatally in the gerbil. Quantitative analyses of the postnatal development of the organ of Corti, including supporting cells and the basilar membrane, were carried out. The morphological study confirmed that maturation of the sensory cells proceeds with a base-to-apex gradient, with the outer hair cells appearing to mature before the inner hair cells. Maturation of the supporting cells and the basilar membrane commenced first in the middle turn. Expansion of the second row of Deiters' cells began at 6 days after birth in the middle turn, before enlargement of the pillar cell heads at 8 days postnatally. Pillar cell head enlargement continued until 20 days postnatally in the middle turn. The tunnel of Corti and spaces of Nuel appeared first in the middle turn between 8 and 10 days postnatally. The maturation of the basilar membrane involved the thickening of the central hyaline layer and a reduction in the epithelial cells on the tympanic aspect. This process continued until about 20 days after birth. The cochlear microphonic potential, whole nerve action potential, and stimulus frequency otoacoustic emissions were recorded from 12 days after birth onward and related to changes in organ of Corti morphology. The results show that changes in the accessory structures continue throughout the period of onset and development of cochlear responses between 12 and 20 days after birth, and may therefore influence the micromechanical responses of the organ of Corti to acoustic stimuli during this period.  相似文献   

7.
Spectrin is a cytoskeletal protein found in the cortex of many cell types. It is known to occur in cochlear outer hair cells (OHCs) with previous immunoelectron microscopical studies showing that it is located in the cuticular plate and the cortical lattice. The latter is a network of filaments associated with the lateral plasma membrane that is thought to play a role in OHC motility. Spectrin has also been found in inner hair cells (IHCs) and supporting cells using immunofluorescent techniques, but its ultrastructural distribution in these cells has not yet been described. This has, therefore, been investigated using a monoclonal antibody to alpha-spectrin in conjunction with pre- and post-embedding immunogold labelling for transmission electron microscopy. Labelling was found in a meshwork of filaments beneath the plasma membranes of both IHCs and supporting cells and, in pillar cells, close to microtubule/microfilament arrays. It was also found in association with the stereocilia of OHCs and IHCs and, as expected, in the cortical lattice and cuticular plate of OHCs. Thus, spectrin is a general component of cytoskeletal structures involved in maintaining the specialised cell shapes in the organ of Corti and may contribute to the mechanical properties of all the cell types examined.  相似文献   

8.
In the adult mammalian cochlea, post-injury hair cell losses are considered to be irreversible. Recent studies in cochlear explants of embryonic rodents show that the organ of Corti can replace lost hair cells after injury. We have investigated this topic in vivo during the period of cochlear development. Rat pups were treated with a daily subcutaneous injection of 500 mg/kg amikacin for eight consecutive days between postnatal day 9 (PND 9) and PND 16. During this period the organ of Corti is not fully mature, but hair cells are hyper-sensitive to aminoglycoside antibiotics. Scanning and transmission electron microscopy was used to evaluate morphological changes in the organs of Corti during the treatment and at different post-treatment periods, up until PND 90. A massive loss in outer and inner hair cells was observed at least as early as PND 14. A prominent feature in the apical part of cochleas at PND 21 and 35 was the transient presence of small atypical cells in the region of pre-existing outer hair cells. These atypical cells had tufts of microvilli reminiscent of nascent stereociliary bundles. A second striking observation was the replacement of degenerating inner hair cells by pear-shaped supporting cells throughout the cochlea. These cells were covered with long microvilli, and their basal pole was contacted by both afferent and efferent fibers, as in the early stages of inner hair cell maturation. At PND 55 and 90, these features were not clearly observed due to further cytological changes in the organ of Corti. It is possible that an attempt at hair cell neodifferentiation could occur in vivo after an amikacin treatment in the rat during the period of cochlear hyper-sensitivity to antibiotic.  相似文献   

9.
Hair cell regeneration is well documented in the inner ear sensory epithelia of lower vertebrates and birds and may occur in the vestibular organs of mammals. By contrast, hair cell loss in the mature mammalian cochlea is considered irreversible. However, recent reports have suggested that an attempt at hair cell regeneration could occur in vivo in aminoglycoside-lesioned cochleas from neonatal rats. After amikacin treatment, atypical cells with apical specialization reminiscent of early differentiating stereocilia are transiently present at the apex of the intoxicated cochleas but fail to differentiate as hair cells in later stages. In the present study, we used electronic microscopy, histochemistry, and confocal microscopy to investigate the cellular rearrangements in the amikacin-lesioned organ of Corti of rat pups. In addition, we used 5-bromo-2'-deoxyuridine immunocytochemistry to determine whether mitotic processes are involved in the formation of the atypical cells. The morphologic and molecular data suggest that atypical cells are not recovering hair cells, but share characteristics of immature hair cells and supporting cells. Proliferative cells were absent from the region occupied by atypical cells, suggesting that the latter did not arise through mitotic processes. Altogether, the present results support the hypothesis that atypical cells arise through direct transformation of some of the supporting cells that reorganize during hair cell degeneration.  相似文献   

10.
The deafness mouse (dn/dn) is a well known model of hereditary deafness uncomplicated by behavioral and motor disturbances. The organ of Corti in this mouse develops a normal complement of sensory and supporting cell structures, yet animals homozygous for this gene never demonstrate any hearing capacity. They are profoundly deaf from birth. Soon after development, the organ of Corti rapidly degenerates, most sensory cells having vanished by 50 days of age. Published observations have suggested that apical regions of the organ of Corti may regenerate some supporting cell structures by 90 days of age. We have quantified changes in organ of Corti structure from 15 to 130 days of age using several different measures. Measures of peak height and total cross-sectional area. as well as a subjective rating scale, all demonstrate consistent degenerative changes during this time period. No evidence for regeneration of supporting or sensory cell structures is noted, although a surprising degree of variability is present in all regions of the organ of Corti which may account for previous claims.  相似文献   

11.
Aquaporins (AQPs) confer a high water permeability on cell membranes and play important parts in secretory and absorptive epithelia in kidney and other organs. Here we investigate whether AQPs are expressed in the sensory epithelia of the inner ear, where a precise volume regulation is crucial. By use of specific antibodies it was found that the inner ear contains AQP1 and 4 while being devoid of detectable levels of AQP2, 3 or 5. Immunofluorescence and postembedding immunogold labelling revealed a strictly non-epithelial distribution of AQP1, confirming previous data. In contrast, AQP4 protein and mRNA (visualized by in situ hybridization) were concentrated in select types of supporting cell, including Hensen's cells and inner sulcus cells. Immunogold particles signalling AQP4 were confined to the basolateral plasma membrane of Hensen's cells and to the basal plasma membrane of Claudius cells and inner sulcus cells. AQP4 was also found in supporting cells of the vestibular end organs, but was absent from transitional epithelial cells and dark cells. Strong labelling for AQP4 and AQP4-mRNA was associated with the central part of the cochlear and vestibular nerves. Hair cells were consistently unlabelled. Our findings indicate that AQP4 may facilitate osmotically driven water fluxes in the sensory epithelia of the inner ear and thus contribute to the volume and ion homeostasis at these sites.  相似文献   

12.
Nitric oxide synthase III (NOS III) was identified in the guinea pig cochlea on an ultrastructural level using a post-embedding immunolabeling procedure. Ultrathin sections of London Resin (LR) White-embedded specimens were incubated with various concentrations of a commercially available antibody to NOS III and the immunoreactivity visualized by a gold-labeled secondary antibody. Analysis of ultrathin sections of the organ of Corti in the second turn of the cochlea showed that NOS III could be localized in the endothelial cells of the blood vessels under the basilar membrane, which was comparable to its location in similar cells types in various biological systems. Besides this, NOS III was also found in the cytoplasm and in the nuclei of inner and outer hair cells. Immunoreactivity was not distributed homogeneously within receptor cells. Numerous gold particles could be identified at the border of the cuticular plates, in the middle parts of the stereocilia and in the cytoplasm. Gold-labeled anti-NOS III antibodies in these sites were seen mostly on the cytoplasmic side of the submembranous cisterns in the vicinity of mitochondria and in the central parts of the hair cells, whereas the cisterns were nearly free from any immunoreactivity. NOS III was also detected in the efferent and afferent nerve endings that were located at the basal and basolateral side of the outer hair cells. Some immunoreactivity was visible in different nerve fibers of the inner and outer spiral tunnels. Besides this, gold-labeled antibodies were also present in the cuticular plate of inner and outer pillar cells, in the cytoskeletal elements located in the apical parts of Deiters cells, forming the lamina reticularis, and in the cytoskeletal-containing region of the cytoplasm of those Deiters cells located at the basal side of the outer hair cells. The role of the NOS III immunoreactivity identified in the organ of Corti was consistent with respect to hair cell and tissue modulation.  相似文献   

13.
The intricate and spatially precise ways in which keratin intermediate filaments are deployed in certain cochlear epithelial cells, called supporting cells, suggests that these filaments make a micromechanically important contribution to the functional design of the guinea pig organ of Corti. Filament arrays that include keratins 8, 18, and 19 are confined mainly to regions close to the ends of large transcellular microtubule bundles in supporting cells. These cells and their microtubule bundles link sensory hair cells to a specialized basement membrane that vibrates during hearing. The keratin filament arrays apparently help anchor the ends of the microtubule bundles to cell surfaces. Filaments are concentrated at the apices and bases of most cells that contact hair cells. Substantial arrays of adherens junctions link the apices of these cells. Hence, keratin filaments may contribute to a cytoskeletal network that distributes mechanical forces from cell to cell and that coordinates the displacement of neighboring hair cells. However, high concentrations of keratin filaments have not been detected at the apices of one of the supporting cell types, which apparently has a mechanical role that is different from that of the others. Transmission electron microscopy has revealed previously undescribed filament networks at all the locations where the binding of antibodies to keratins is most marked. There is evidence that intercellular linkage of the keratin networks via their association with actin-containing meshworks and adherens junctions is more extensive than linkage provided by desmosomes.  相似文献   

14.
The cochleo- and tonotopic organization of the second auditory area (AII) was investigated in cats anaesthetized with pentobarbital using a combination of macro- and microelectrode recording technique. The results obtained following electrical stimulation of the neural fibres innervating different regions of the organ of Corti indicate the existence of two complete representations of the cochlea in area AII: one in the dorsocaudal portion, the other in its ventrorostral portion. These two cortical representations of the cochlea differ in size and spatial orientation. The dorsocaudal projection area extends over a distance of 2.6-3.2 mm from the basal to the apical focus and is arc-shaped. The spatial orientation of cochlea representation within the dorsocaudal region of AII is similar to that described in AI, in that stimulation of the cochlea base results in maximal responses in the more rostral portion of AII and stimulation of the apex evokes cortical responses more caudally. The ventrorostral region within AII is smaller (1.4-2.5 mm length), and has the opposite cochleotopic orientation (base and apex stimulation represented caudally and rostrally, respectively). In both AII zones, there was a proportionally greater cortical representation of basilar membrane than of middle and apical portions. Although two distinct zones with the overall cochleotopic pattern described above were noted in all cats, their precise size and location considerably varied in different animals. Using microelectrode recordings, a cortical tonotopic organization can be observed that was consistent with and expanded on the earlier cochleotopic data. Within the dorsocaudal region of AII, neurons with higher best frequency responses were located in more rostral regions, while those with lower best frequencies were located caudally. An orderly progression of best frequency responses was noted as serial recordings carried out along the full extent of the representation. Neurons within the ventrorostral region of AII also displayed an orderly progression of best frequencies, but in the opposite direction, with higher best frequencies noted more caudally and lower best frequencies more rostrally.  相似文献   

15.
The time course of events which are essential for nerve-fiber regeneration in the mammalian cochlea was determined using a group of chinchillas that had been exposed for 3.5 hr to an octave band of noise with a center frequency of 4 kHz and a sound pressure level of 108 dB. The animals recovered from 40 min (0 days) to 100 days at which times their inner ears were fixed and the organs of Corti prepared for phase-contrast and bright-field microscopy as plastic-embedded flat preparations. Selected areas identified in the flat preparations were semi-thick and thin sectioned at radial or tangential angles for examination by bright-field and transmission electron microscopy. The following time-ordered events appeared critical for nerve-fiber regeneration: (1) The area of the basilar membrane in which regeneration had a possibility of occurring showed signs of severe injury. Outer hair cells degenerated first followed by outer pillars, inner pillars, inner hair cells and other supporting cells; (2) Myelinated nerve fibers in the osseous spiral lamina became fragmented, starting at the distal ends of the fibers. This degeneration gradually extended back to Rosenthal's canal; (3) Fibrous processes, originating from Schwann-like cells in the osseous spiral lamina, extended laterally on the basilar membrane; (4) Schwann cells lined up medial to the habenulae perforata in the areas of severest damage, apparently ready to migrate through the habenulae onto the basilar membrane; (5) Schwann-cell nuclei appeared on the basilar membrane beneath the developing layer of squamous epithelium which was in the process of replacing the degenerated portion of the organ of Corti; (6) Regenerated nerve fibers with thin myelin sheaths or a simple investment of Schwann cell cytoplasm appeared in areas of total loss of the organ of Corti; and (7) The myelin sheaths on the regenerated nerve fibers gradually became thicker.  相似文献   

16.
RT-PCR was used to assay for growth factors and receptors from seven different protein families in cochlea tissues of the juvenile rat. There was a broad representation of the growth factor families in all the cochlea tissues examined, though the organ of Corti and stria vascularis expressed a greater variety than the spiral ganglion. This broad expression suggests that a variety of known growth factors play significant roles in the development, maintenance, and repair of the inner ear. The results of this survey serve as a basis for the design of future in vitro experiments that will address the ability of growth factors to protect hair cells from damage and to evoke a repair-regeneration response by injured hair cells.  相似文献   

17.
Intoxication with high doses of the aminoglycoside antibiotic amikacin in a supranormal sensitive period in the rat induces complete destruction of the inner and outer hair cells in the organ of Corti in all turns, whereas the supporting cells remain partially preserved in the upper turns. With increasing survival time, the number of ganglion cells in the spiral ganglion decreases progressively, reaching a minimum of about 10% surviving cells after 12 months. Both type I and type II neurons are subject to retrograde degeneration, although type-II cells degenerate more slowly than type-I cells. The presence or absence of supporting cells in the organ of Corti does not seem to influence neuronal degeneration. This retrograde degeneration is similar in all animals so far studied but its time course is different from different species. Retrograde degeneration after destruction of Corti's organ is a long-lasting process and is never completed at once. This must be taken into consideration in the treatment of total deafness with electric stimulation of surviving neurons.  相似文献   

18.
It has been demonstrated that the gap junctions of the supporting cells of the organ of Corti are controlled by H+ and Ca2+. Inside these cells there is a tubular structure. It is supposed that this network is endoplasmic reticulum. Calcium release from inside the cells, and the effect of calcium on the gap junctions of these cells, were investigated under whole cell clamping application of ryanodine and caffeine. Membrane capacitance and membrane resistance were calculated, with corrections for changes in whole cell parameters. Ryanodine-treated cells (1 microM-10 mM), caffeine-treated cells (5 mM 500 nM) and A23187-treated cells were uncoupled at their gap junctions. Therefore, Ca2+ plays a role in the uncoupling of the gap junctions in supporting cells of the organ of Corti from inside the cells.  相似文献   

19.
This study has characterized the repertoire of the anion exchanger (AE) family members expressed within the guinea pig organ of Corti, the auditory neuroepithelia. Both AE2 and AE3 cDNAs were present, but AE1 cDNA was not detected. The more abundant AE2 was sequenced and its expression characterized in the cochlea. The 3888 base pairs (bp) AE2 sequence, compiled from multiple clones, includes 150 bp of upstream non-coding sequence and 3717 bp of open reading frame encoding a protein of 1238 amino acids. Immunoblot of cochlear homogenate revealed a single AE2-immunoreactive band of Mr 180 kDa. In situ hybridization and immunohistochemical analysis localized AE2 expression to several tissues and cell types within the guinea pig inner ear, including superior half of the spiral ligament and within the interdental cells lining the spiral limbus. However, AE2 was not clearly detected in the outer hair cells (OHC) of the organ of Corti by either immunohistochemistry or in situ hybridization. The results of these studies imply a physiologic role of AE2 in the cochlear homeostasis, but do not support its role as a potential 'motor protein' in mediating the in vitro-observed voltage-gated, ATP-independent OHC motility.  相似文献   

20.
Specific antibodies against alpha-tubulin, acetylated alpha-tubulin, tyrosinated alpha-tubulin and polyglutamylated alpha- and beta-tubulin were used to compare the distribution of posttranslationally modified tubulin in the vestibular end-organs of the gerbil. Antibodies to acetylated tubulin labeled a dense network of microtubules in the hair cells and bundles of microtubule in the supporting cells. Nerve fibers within and below the epithelium were weakly labeled. This localization paralleled that seen with antibodies to alpha-tubulin which labeled all microtubules present in the cells. Antibodies to tyrosinated tubulin labeled networks and bundles of microtubules in both hair cells and supporting cells and in addition gave intense, diffuse labeling in the cytoplasm of both cell types. It also labeled the nerve fibers. Antibodies to polyglutamylated tubulin were localized mainly in nerve fibers, and in the calyces the labeled microtubules were found running circumferentially around the type I sensory hair cells. Thus, tyrosinated tubulin was found in the fine networks of microtubules in both the sensory and supporting cells. Acetylated tubulin was found in the dense networks and bundles of microtubules in the sensory and supporting cells, but did not colocalize with polyglutamylated tubulin, which was found predominantly in the nerve fibers. The labeling patterns for the tyrosinated tubulin and posttranslationally modified tubulins in the sensory and supporting cells of the vestibular end organs differ from that seen in the organ of Corti and may reflect differences in the stability of the microtubules and the mechanical properties of the sensory epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号