首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acicular magnetite (Fe3O4) powders were synthesized through new glycothermal dehydration by using crystalline α-FeOOH as precursor and glycols as solvent. When ethylene glycol was used as solvent, the phase was in-situ transformed from acicular α-FeOOH to α-Fe2O3 and finally to Fe3O4 at 270 °C for 6 h without morphological change. When water was added as a co-solvent in glycothermal reaction, Fe3O4 powders were synthesized through dissolution–recrystallization process at 230 °C for 3 h. The volume ratio of ethylene glycol to water (E/W) in the reaction has a strong effect on the morphology of the synthesized Fe3O4 particles. The particle shape of Fe3O4 particles changed from needle to sphere when the water content in E/W volume ratio increased from 0.5 to 1 mL in mixed glycothermal condition. When the water were added by more than 10 ml, the particle shape of Fe3O4 changed from sphere to octahedron truncated with the {100} faces and finally distinct octahedron with only {111} faces. Also, it is demonstrated that the size of Fe3O4 particles can be controlled from 1–2 μm to 100–200 nm by varying the reaction conditions such as the volume ratio of water to ethylene glycol and additive in glycothermal reaction.  相似文献   

2.
In this study, pure ZnO microbullets, ZnO–ZnFe2O4 composite, and ZnO–Fe2O3–ZnFe2O4 composite with micron structured balloons, rods, and particles were prepared by a simple solvent thermal process using methanol or ethanol as solvents. The influence of solvents on the composition and morphology of the products was studied, and their gas-sensing properties were also investigated. The morphology of ZnO microbullets synthesized in ethanol is similar to but more uniform than that of ZnO microbullets synthesized in methanol. The Fe-doped ZnO synthesized in ethanol contains many micron particles homogeneously dispersing on the surface of the microbullets, which is composed of hexagonal wurtzite ZnO and franklinite ZnFe2O4, while Fe-doped ZnO prepared in methanol consists of micron structured balloons, rods, and particles, which is composed of hexagonal wurtzite ZnO, hematite Fe2O3, and franklinite ZnFe2O4. Compared with pure ZnO and ZnO–ZnFe2O4 composite, the ZnO–Fe2O3–ZnFe2O4 composite presented high response, rapid response/recovery characteristics, good selectivity, and excellent stability to acetone at relatively low operating temperature of 190 °C. This sensor could detect acetone in wide range of 1–1000 ppm, which was expected to be a promising gas sensor for detecting acetone.  相似文献   

3.
Crystalline phase formation and microstructure of ZnO varistors with a basic composition ZnO–Bi2O3–Sb2O3 were examined. Addition of chromium oxide to this basic varistor resulted in an α-spinel (α-Zn7Sb2O12) phase dissolving a significant amount of Cr, while the β-spinel did not. β-spinel transformed to pyrochlore during cooling, whereas α-spinel hardly transformed to pyrochlore irrespective of the cooling conditions. When Sb2O3 was completely replaced by Cr2O3, ZnCr2O4 was formed instead of spinel. α-spinel particles were 1–2 μm in size and intra- as well as intergranular. ZnCr2O4 particles, smaller than 1 μm in size, however, were present as aggregates in the bismuth-rich matrix phase at the grain boundaries. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

4.
The sintering behaviour ofβ-Sialon composition powders with 5 mol% Y2O3-ZrO2 additives at 1750°C for 1.5 h in nitrogen or argon atmospheres was studied.β-Sialon composition powders could be pressureless-sintered to about 93% theoretical density by the addition of 5 wt% 5 mol% Y2O3-ZrO2. By HIPing the pressureless-sintered bodies the density was increased to higher than 98% theoretical density, and uniform submicrometre ZrO2 particles were homogeneously dispersed in theβ-Sialon matrix, resulting in an increase of fracture toughness,K 1c, from 5.1 to about 5.7 MN m−1.5. Increasing the amount of tetragonal ZrO2 transformable to monoclinic phase in theβ-Sialon matrix increasedK 1c.  相似文献   

5.
Due to its strong absorption to visible light and intrinsic polarizability, β-Bi2O3 could be a promising candidate for the visible-light-activated photocatalysis. However, its structural instability during a photocatalytic process prevents it from being used practically. In this work, titanium-doped β-Bi2O3 was synthesized by a hydrothermal method with subsequent calcination under 400 °C. Its crystal structure, photophysical property, and structural stability were investigated by using powder X-ray diffraction, Raman, infrared and diffuse reflectance UV–vis spectroscopies. The crystal structure of the titanium-doped β-Bi2O3 is analogous to β-Bi2O3. These two oxides exhibited comparable photocatalytic activities on the photodegradation of indigo carmine, rhodamine B, and methylene blue under visible-light irradiation. However, unlike β-Bi2O3, the titanium-doped β-Bi2O3 was quite stable during these photocatalytic reactions. The improvement in structural stability was attributable to the substitution of titanium species in the host crystal lattice. The current investigation results point toward the possibility of metal ion-doped bismuth oxides as efficient visible-light-activated photocatalysts.  相似文献   

6.
α- Fe2O3 nanoparticles have been synthesized by gel evaporation method in air at 300°C. The average size of as synthesized α-Fe2O3 nanoparticle was estimated to be 30 nm and the particles were of good crystalline nature. Shape of the nanoparticles were slightly deviated from spherical which is attributed to the asymmetric growth of primary nuclei. MicroRaman and X-ray diffraction results have shown mixed phases of α-Fe2O3 and γ-Fe2O3. However, the α-Fe2O3 phase is more predominant than γ-Fe2O3 due to the incomplete nucleation of α-Fe2O3 particles at the size of 30 nm. The vibrating sample magnetometer measurement shows that the nanoparticles possess ferromagnetic property.  相似文献   

7.
The reaction sintering of β-sialon (Si4Al2O2N6) from a powder mixture of Si3N4, Al2O3 and AIN was studied to clarify factors affecting the densification. The presence of sufficient SiO vapour on the compact and excess oxide with respect toβ-sialon composition was the most important factor. High densityβ-sialon was fabricated by heating the compact at 1800° C under 1 atm. N2. The sintering was carried out with sufficient SiO vapour pressure to prevent thermal decomposition of sintered sialon by packing the compact with a powder mixture of Si3N4 and SiO2. Care was taken to minimize the amount of excess oxide in the starting composition to obtain a high density sialon with a small amount of intergranular X-phase. The maximum density of 3.04 g cm−3 was obtained from the compact with 2 wt % excess Al2O3 in the composition. The strength of the sinteredβ-sialon was 490 MN m−2 at room temperature and 480 MN m−2 at 1200° C. The values are the best among those so far published for sinteredβ-sialons.  相似文献   

8.
By using Co2+ and Co3+ salts, and freshly extracted ovalbumin, Co3O4 nanocrystals have been synthesized successfully. The pH of the solution was self-regulated for the hydrolysis of metal ions as the ovalbumin-water mixture was highly basic. Water soluble ovalbumin proteins served as a perfect matrix for entrapment of Co2+ and Co3+ ions thus forming a gel. Upon heat treatment, the dried gel precursor decomposed into nanocrystalline Co3O4. The crystallite size obtained by XRD line profile fitting was 45 ± 8 nm and particle size estimated from the SEM was in the range 20 nm-2 μm. EPR results show a very good fit to literature reports for nanocrystals in the size range of 8–17 nm. Even though the overall particle size is quite large and its distribution is quite wide EPR results confirm nanocrystalline nature of the particles obtained. Presented route is simple, cost effective, and environmentally friendly.  相似文献   

9.
Silicon nitride (94.5% α, 5.5% β), BaCO3, Al2O3, and SiO2 powders were mixed and pressureless sintered to produce a ceramic matrix composite consisting of 30 vol% barium aluminosilicate (BaO·Al2O3·2SiO2 or BAS) matrix reinforced with in situ grown whiskers of β-Si3N4. In situ X-ray studies of the reactions indicated that BaCO3 decomposes first to yield BaO which reacts with SiO2 to yield a series of barium silicates which then react with Al2O3 between 950 and 1300°C to yield hexacelsian BAS. The sintering times were varied in order to develop a material system that combines the favourable properties of BAS with the high strength of Si3N4. In situ high-temperature X-ray studies after composite processing did not reveal any changes in the BAS or Si3N4 up to temperatures of 1300°C. Dilatometry studies of the sintered composite indicated a low-temperature transformation between 230 and 260°C with the temperature of transformation and volume change associated with the hexagonal to orthorhombic transformation decreasing with an increase of sintering time. Room- and high-temperature (1400°C) strengths were evaluated using four-point bend flexural tests. Composites exhibited near theoretical densities and an increase in flexural strength that was primarily dependent on the higher α- to β-Si3N4 transformation. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

10.
We have developed a procedure for the synthesis of phase-pure α- and β-Cu2V2O7. Thermal analysis and X-ray diffraction demonstrate that the β-phase (monoclinic structure) exists at low temperatures (stability range 25–610°C), while α-Cu2V2O7 (orthorhombic structure) is stable in the range 610–704°C. The α-phase observed during cooling, in particular at room temperature, is in a metastable state. The melting of the high-temperature phase γ-Cu2V2O7, which forms between 704 and 716°C, has the highest rate in the range 770–785°S and is accompanied by peritectic decomposition and oxygen gas release. Subsequent cooling gives rise to four exothermic peaks, one of which (780.9°C) is attributable to the crystallization of the peritectic melt, one (620.1°C) is due to the γ → α → β phase transformations of Cu2V2O7, and the other two arise from the crystallization of multicomponent low-melting-point eutectics containing α- and β-Cu2V2O7, CuVO3, and other compounds.  相似文献   

11.
Powders with particle size ∼5–15 nm of nickel ferrite have been synthesized chemically from aqueous precursor solutions. From the structural and magnetic properties, it is determined that the synthetic material possesses high NiFe2O4 phase purity and controllable particle size. The optimum calcination temperature is found to be ∼500 °C, at which the NiFe2O4 particles exhibit a saturation magnetization of 2800 G, and a particle size of about 10 nm. The particles are then deposited onto silicon substrates by electrophoretic deposition (EPD) process. The Ni ferrite particles are suspended in a medium of isopropyl alcohol with magnesium nitrate and lanthanum nitrate salts as charging agents. The transportation of particles to the substrate surface is assisted by applied electric field and particles adhere to the substrate surface by a glycerol based surfactant. The magnetic response of the EPD film has been investigated by vibrating sample magnetometer (VSM) measurements.  相似文献   

12.
LiEu1−x (W2−y Mo y )O8:xBi3+ series red-emitting phosphors were synthesized by solid state reaction. The structure, morphology, and photoluminescent properties of phosphors were studied by X-ray powder diffraction, scanning electron microscopy, and photoluminescence spectrum, respectively. X-ray powder diffraction analysis showed that the as-obtained phosphors belong to the scheelite structure. The average particle size of the investigated phosphor was about 8 μm. The excitation spectrum exhibits a charge-transfer broad band along with some sharp peaks from the typical 4f–4f transitions of Eu3+. Under excitation of UV, near-UV, or blue light, these phosphors showed strong red emission at 615 nm due to 5D07F2 transition of Eu3+. The incorporation of Mo6+ into LiEuW2O8:Bi3+ could induce red-shift of the charge-transfer broad band and a remarkable increase of photoluminescence. The highest red-emission intensity was observed with LiEu0.80Mo2O8:0.20Bi3+. Compared with the commercial red-emitting phosphor, Y2O2S:Eu3+, the emission intensity of LiEu0.80Mo2O8:0.20Bi3+ phosphor is much stronger than that of Y2O2S:Eu3+ and its chromaticity coordinates are closer to the standard values than that of the commercial phosphor. The optical properties of LiEu0.80Mo2O8:0.20Bi3+ phosphor make it attractive for the application in white-light-emitting diodes (LEDs), in particular for near-UV InGaN-based white-LEDs.  相似文献   

13.
The dielectric properties of nanophase Ag2HgI4 and Ag2HgI4-Al2O3 nanocomposites at different frequencies have been studied over a temperature range covering the stability range of β phase of Ag2HgI4 and beyond the β to a phase transition temperature. έ′, tan δ and σa.c. of nanophase Ag2HgI4 and Ag2HgI4-Al2O3 nanocomposites were found to be larger than the reported values for polycrystalline pellets of Ag2HgI4. The dielectric properties of the nanocomposites were found to be a function of the wt.% of nano alumina. The observed changes are attributed to the grain boundary properties of nanophase materials and to the microsize space charge effects.  相似文献   

14.
Co3O4/CoO nanoparticles have been synthesized by a simple method which is based on the ball-milling and calcination of cobalt acetate and citric acid. The samples were characterized using X-ray diffraction, transmission electron microscope, and Fourier transform infrared spectroscopy. The results show that Co3O4 nanoparticles with an average particle size of ∼40 nm can be obtained by calcination of ball-milled precursors at relatively low temperature (350 °C) for 3 hours. It should be noted that it is possible to control the size of Co3O4 particles by calcination temperature, calcination time and also by ball-milling duration using this method. Meanwhile, the pure CoO nanoparticles were obtained successfully by thermal decomposition of Co3O4 at 950 °C and quickly quenching to liquid nitrogen.  相似文献   

15.
Ferrimagnetic materials can be expected to be useful as thermal seeds for hyperthermic treatment of cancer, especially where the cancer is located in deep parts of body, as they can generate heat by magnetic hysteretic loss when they are placed in an alternating magnetic field. In this study, hollow magnetite (Fe3O4) particles were prepared using an enzymatic reaction of urease. A hollow particle was obtained by using a Pasteur pipette. The particle was 500 μm in size and was composed of Fe3O4. Its saturation magnetization and coercive force were 57 emu⋅g−1 and 183 Oe, respectively. Its heat generation under an alternating magnetic field of 300 Oe at 100 kHz was estimated to be 45 W⋅g−1. Microspheres 30 μm in diameter were also successfully obtained by using a spray gun.  相似文献   

16.
Phase relations in the system Ca-Ti-O have been established by equilibration of several samples at 1200 K for prolonged periods and identification of phases in quenched samples by optical and scanning electron microscopy, XRD and EDS. Samples representing 20 compositions in the ternary system were analyzed. There was negligible solid solubility of Ca in the phases along the binary Ti-O, and of Ti in CaO. Four ternary oxides were identified: CaTiO3, Ca4Ti3O10 and Ca3Ti2O7 containing tetravalent titanium, and CaTi2O4 containing trivalent titanium. Tie-lines link calcium titanite (CaTi2O4) with the three calcium titanates (CaTiO3, Ca4Ti3O10 and Ca3Ti2O7), CaO, oxygen excess TiO1+δ and stoichiometric TiO. Tie-lines connect CaTiO3 with TiO2−x , Magneli phases Ti n O2n−1 (28 ≥ n ≥ 4), Ti3O5, Ti2O3 and TiO1+δ . CaO was found to coexist with TiO, and Ti-O solid solutions α and β. The phase diagram is useful for understanding the mechanisms and kinetics of direct calciothermic reduction of TiO2 to metal and electrochemical reduction of TiO2 using graphite anode and molten CaCl2 electrolyte.  相似文献   

17.
This work was carried out in order to prepare precursor powders with a spodumene composition (Li2O·Al2O3·4SiO2, LAS) and to investigate their crystallization behaviours during calcination. A fine β-spodumene type amorphous powder was obtained through sol-gel techniques using LiOCH3, Al(OC2H5)3, Si(OC2H5)4 and Zr(OC2H5)4 as the starting metal alkoxides. The process included well controlled hydrolysis polycondensation of the raw alkoxides. Differential thermal analysis (DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction (ED) analyses were utilized to study the crystallization behaviour of the gels. The activation energy of β-spodumene crystallization was 192 kJ mol−1 for LAS gels with 4 wt% ZrO2, being much smaller than those of LAS gel without ZrO2, 382 kJmol−1. For calcination at 800–1200°C, the crystallized phases comprised a major phase of β-spodumene and a minor phase of zirconia (ZrO2).  相似文献   

18.
The reaction route and morphology of lanthanum--aluminate (LBA) crystals formed in Ce-TZP matrix were studied by examining the crystal phase changes and the microstructures in relation to the heat-treatment time, heat-treatment temperatures and the particle size of raw Al2O3 powders. In the Ce-TZP matrix, the LBA crystal was formed by the reaction between La2O3 and Al2O3 through the LaAlO3 phase as the intermediate. La2Zr2O7 forms at 800 °C and remains in the temperature range 800–1500 °C, and LaAlO3 forms between 1200 and 1400 °C. The LaAlO3 reacts with Al2O3 to form LBA above 1500 °C. The diffusion of La3+ through the La2Zr2O7 phase was faster than that of Al3+. The morphology of LBA crystals was dependent on the particle size of the starting raw Al2O3 particle. When submicrometre size Al2O3 (0.4m) particles were used as the starting particles, anisotropic, plate-like LBA crystals, about 10m long, were formed during heat treatments. On the other hand, Al2O3 of larger grain sizes (3.6, 10.3m) yield conglomerates of LBA crystals. The size of the conglomerates is similar to that of the raw Al2O3 particle. The dependence of the morphology of LBA on the particle size of Al2O3 can be attributable to the sintering process of the Ce-TZP matrix, leading to the control of the mechanical properties of Ce-TZP ceramics with LBA crystals.  相似文献   

19.
Quasi-one-dimensional TiO2-based nanostructures have been produced through hydrothermal treatment-without additives and in the presence of chitosan—of anatase nanopowder synthesized by an electrochemical sol-gel process. The morphology, phase composition, and structure of the hydrothermal synthesis products were studied by various physicochemical characterization techniques, including high-resolution electron microscopy, X-ray diffraction, and IR spectroscopy. The results demonstrate that the forming one-dimensional structures are isostructural with β-titanic acid, H2Ti3O7. Heat treatment at t ≥ 500°C yields a mixture of sodium polytitanates, Na y Ti x O2x + 1, with y = 0.5–2 and x = 2–5. The surface morphology and shape of the nanostructures persist up to 700°C. The key features of the formation of quasi-one-dimensional TiO2-based structures in the presence of chitosan have been identified.  相似文献   

20.
An extensive theoretical study is performed for wide bandgap crystalline oxides and nitrides, namely, SiO2, GeO2, Al2O3, Si3N4, and Ge3N4. Their important polymorphs are considered which are for SiO2: α-quartz, α- and β-cristobalite and stishovite, for GeO2: α-quartz, and rutile, for Al2O3: α-phase, for Si3N4 and Ge3N4: α- and β-phases. This work constitutes a comprehensive account of both electronic structure and the elastic properties of these important insulating oxides and nitrides obtained with high accuracy based on density functional theory within the local density approximation. Two different norm-conserving ab initio pseudopotentials have been tested which agree in all respects with the only exception arising for the elastic properties of rutile GeO2. The agreement with experimental values, when available, are seen to be highly satisfactory. The uniformity and the well convergence of this approach enables an unbiased assessment of important physical parameters within each material and among different insulating oxide and nitrides. The computed static electric susceptibilities are observed to display a strong correlation with their mass densities. There is a marked discrepancy between the considered oxides and nitrides with the latter having sudden increase of density of states away from the respective band edges. This is expected to give rise to excessive carrier scattering which can practically preclude bulk impact ionization process in Si3N4 and Ge3N4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号