首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polypropylene (PP)/nylon 11/maleated ethylene‐propylene‐diene rubber (EPDM‐g‐MAH) ternary polymer blends were prepared via melt blending in a corotating twin‐screw extruder. The effect of nylon 11 and EPDM‐g‐MAH on the phase morphology and mechanical properties was investigated. Scanning electron microscopy observation revealed that there was apparent phase separation for PP/EPDM‐g‐MAH binary blends at the level of 10 wt % maleated elastomer. For the PP/nylon 11/EPDM‐g‐MAH ternary blends, the dispersed phase morphology of the maleated elastomer was hardly affected by the addition of nylon 11, whereas the reduced dispersed phase domains of nylon 11 were observed with the increasing maleated elastomer loading. Furthermore, a core‐shell structure, in which nylon 11 as a rigid core was surrounded by a soft EPDM‐g‐MAH shell, was formed in the case of 10 wt % nylon 11 and higher EPDM‐g‐MAH concentration. In general, the results of mechanical property measurement showed that the ternary blends exhibited inferior tensile strength in comparison with the PP matrix, but superior toughness. Especially low‐temperature impact strength was obtained. The toughening mechanism was discussed with reference to the phase morphology. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
The mechanical properties and morphology of polypropylene/wood flour (PP/WF) composites with different impact modifiers and maleated polypropylene (MAPP) as a compatibilizer have been studied. Two different ethylene/propylene/diene terpolymers (EPDM) and one maleated styrene–ethylene/butylene–styrene triblock copolymer (SEBS–MA) have been used as impact modifiers in the PP/WF systems. All three elastomers increased the impact strength of the PP/WF composites but the addition of maleated EPDM and SEBS gave the greatest improvements in impact strength. Addition of MAPP did not affect the impact properties of the composites but had a positive effect on the composite unnotched impact strength when used together with elastomers. Tensile tests showed that MAPP had a negative effect on the elongation at break and a positive effect on tensile strength. The impact modifiers were found to decrease the stiffness of the composites. Scanning electron microscopy showed that maleated EPDM and SEBS had a stronger affinity for the wood surfaces than did the unmodified EPDM. The maleated elastomers are, therefore, expected to form a flexible interphase around the wood particles giving the composites better impact strength. MAPP further enhanced adhesion between WF and impact-modified PP systems. EPDM and EPDM–MA rubber domains were homogeneously dispersed in the PP matrix, the diameter of domains being between 0.1–1 μm. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1503–1513, 1998  相似文献   

3.
The miscibility of polymers is not only an important basis for selecting a proper blending method, but it is also one of the key factors in determining the morphology and properties of the blends. The miscibility between ethylene‐propylene‐diene terpolymer (EPDM) and polypropylene (PP) was explored by means of dynamic mechanical thermal analysis, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The results showed that a decrease in the PP content and an increase of the crosslinking density of EPDM in the EPDM/PP blends caused the glass‐transition temperature peaks of EPDM to shift from a lower temperature to higher one, yet there was almost no variance in the glass‐transition temperature peaks of PP and the degree of crystallinity of PP decreased. It was observed that the blends prepared with different mixing equipment, such as a single‐screw extruder and an open mill, had different mechanical properties and blends prepared with the former had better mechanical properties than those prepared with the latter. The TEM micrographs revealed that the blends were composed of two phases: a bright, light PP phase and a dark EPDM phase. As the crosslinking degree of EPDM increased, the interface between the phases of EPDM and PP was less defined and the EPDM gradually dispersed in the PP phase became a continuous phase. The results indicated that EPDM and PP were both partially miscible. The mechanical properties of the blends had a lot to do with the blend morphology and the miscibility between the blend components. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 315–322, 2002  相似文献   

4.
The phase morphology and surface properties of some maleated ethylene propylene‐diene/organoclay nanocomposites (EPDM‐g‐MA/OC) were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle measurements. The effect of organoclay and/or compatibilizing agent [maleic anhydride‐grafted polypropylene (PP‐g‐MA)] on the properties of the EPDM‐g‐MA nanocomposites was investigated. The quality and uniformity of nanoclay dispersion were analyzed by SEM and AFM images. The experimental results showed an intercalate structure and biphasic morphology for the binary blends based on EPDM and clay. The surface properties of the studied composites are significantly influenced by the presence of a compatibilizing agent—PP‐g‐MA. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

5.
A comparative study of two ethylene‐propylene‐diene rubbers (EPDM) polymerized by both conventional (Ziegler–Natta catalysts) and new techniques (metallocene catalysts) is presented. For this purpose, thermoplastic elastomers based on isotactic polypropylene (iPP) and EPDM blends at different percentages were prepared and their properties examined. In particular, the processing behavior and mechanical properties are reported. So, the flow properties analyzed by torque value, melt index, and rheological study reveal that the blends containing EPDM synthesized by metallocene catalyst present a smaller viscosity, thus offering better processing behavior. On the other hand, the mechanical properties show that metallocene EPDM rubbers give rise to more elastic materials with a higher deformation at break and resilience as well as a lower compression set. Moreover, the effectiveness of these innovative EPDM rubbers as impact modifiers for PP is demonstrated. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 25–37, 2002  相似文献   

6.
SAN and EPDM are not miscible. In this work, the dry blending of SAN and EPDM using Centrex (acrylonitrile/EPDM/styrene graft copolymer) and EPMMA (EPDM‐g‐Mah) as coagents was studied. Centrex content was used at 6–20 wt %. EPMMA content in the mixture was 20 wt %. The effects of coagent type and content on the mechanical properties and morphology were investigated. SEM micrographs of SAN/EPDM/Centrex and SAN/EPDM/EPMMA blends showed that both Centrex and EPMMA have an effective role in forming a finer morphology. For the ternary blends, the addition of coagent resulted in a significant reduction in the size of the dispersed phase. The mechanical properties of SAN/EPDM/coagent blends were improved significantly in comparison to the simple SAN/EPDM blends. SAN/EPDM/Centrex blends showed higher stress‐at‐break and SAN/EPDM/EPMMA blends showed higher impact strength. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
A series of high‐temperature thermoplastic elastomers (TPEs) and thermoplastic vulcanisates (TPVs) were successfully developed based on two different types of heat resistant polyamide (PA) (25 parts by weight)—PA‐12 and PA‐6, in combination with three different functionalized rubbers (75 parts by weight) of varying polarity, e.g., maleic anhydride grafted ethylene propylene diene terpolymer (MA‐g‐EPDM), sulphonated ethylene propylene diene terpolymer, and carboxylated acrylonitrile butadiene rubber, by melt mixing method. These rubbers have low level of unsaturation in its backbone, and the plastics showed high melting range. Thus, the developed TPEs and TPVs were expected to be high temperature resistant. Resol type resin was used for dynamic vulcanization to further increase the high temperature properties of these blends. Interestingly, initial degradation temperature of the prepared blends was much higher (421 °C for MA‐g‐EPDM/PA‐12) than the other reported conventional TPEs and TPVs. Fourier transform infrared analysis described the interactive nature of the TPEs and TPVs, which is responsible for their superior properties. The maximum tensile strength with lowest tension set was observed for the carboxylated acrylonitrile butadiene rubber/PA‐12 TPV. Mild increase in mechanical properties without any degradation was observed after recycling. Dynamic mechanical analysis results showed two distinct glass transition temperatures and indicated the biphasic morphology of the blends, as evident from the scanning electron microscopy. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45353.  相似文献   

8.
Composites of polypropylene (PP) with mica powder and impact modifiers were produced by internal mixer. A major drawback in the use of mica‐filled PP is its low impact resistance. In the present study, the effect of the maleated PP (MAPP) and impact modifiers was evaluated on the composite properties separately and together. Thus, two different styrene‐ethylene/butylene‐styrene triblock copolymers (SEBS) and one ethylene‐propylene‐diene terpolymer (EPDM) have been used as impact modifiers in the PP‐mica composites. Addition of MAPP had a negative effect on the composite notched impact strength and elongation at break but had a positive effect on tensile strength when used together with impact modifiers. All three elastomers increased the impact strength of the PP‐mica composites but the addition of maleated SEBS (SEBS‐MA) granted the greatest improvement in impact strength. It was inferred from the scanning electron microscopy that SEBS‐MA had a stronger interaction with mica surface than the other impact modifiers. POLYM. COMPOS., 27:614–620, 2006. © 2006 Society of Plastics Engineers  相似文献   

9.
This article concerns the in situ compatibilization of immiscible isotatic polypropylene/styrene–butadiene–styrene triblock copolymer blends (i‐PP/SBS) by use of a reactive mixture. For this purpose, maleated PP (PP–MAH) and SBS (SBS–MAH) were used as functionalized polymers and 4,4′‐diaminediphenylmethane was used as a coupling agent between maleated polymers, resulting in a graft copolymer. Binary blends of i‐PP/SBS, nonreactive ternary blends of i‐PP/PP–MAH/SBS, and reactive ternary blends of i‐PP/PP–MAH/SBS–MAH with varying diamine/anhydride molar ratios were prepared. The mechanical properties of the blends were determined by tensile and impact‐resistance tests. The optimum improvement in the mechanical properties was found when the diamine/anhydride molar ratio in the ternary reactive blends was 0.5/1. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 516–522, 2003  相似文献   

10.
Isotactic polypropylene (iPP) blends were prepared with two different thermoplastic elastomers, a triblock copolymer styrene–ethylene butylene–styrene (SEBS) and a metallocenic ethylene‐octene copolymer (EO). The mechanical properties and morphology of blends with 0–50 wt% elastomer were studied to determine the influence of the presence of the elastomer on the improvement of toughness. The addition of a nucleating agent as a third component exerted a significant effect on the overall properties. Dynamic mechanical properties, flexural modulus, and impact strength as well as morphology were studied for nucleated and nonnucleated iPP/SEBS and iPP/EO blends. The improvement of impact properties found in binary blends was accompanied by a decrease in stiffness. However, the addition of the nucleating agent provided a good balance between impact strength and stiffness. From the results, SEBS was determined to be a better impact modifier for iPP than EO. The nucleated iPP/SEBS blends demonstrated improved mechanical properties compared with both the nucleated iPP/EO blends and the nonnucleated blends. POLYM. ENG. SCI., 48:80–87, 2008. © 2007 Society of Plastics Engineers  相似文献   

11.
In this study, blends of metallocene short‐chain branched polyethylene (SCBPE) with low‐density polyethylene (LDPE), high‐density polyethylene (HDPE), polystyrene (PS), ethylene–propylene–diene monomer (EPDM), and isotactic polypropylene (iPP) were prepared in weight proportions of 80 and 20, respectively. The crystallization behaviors of these blends were studied with polarized light microscopy (PLM) and differential scanning calorimetry. PLM showed that SCBPE/LDPE, SCBPE/HDPE, and SCBPE/EPDM formed band spherulites whose band widths and sizes were both smaller than that of pure SCBPE. No spherulites were observed, but tiny crystallites were observed in the completely immiscible SCBPE/PS, and the crystallites in SCBPE/iPP became smaller; only irregular spherulites were seen. The crystallization kinetics and mechanical properties of SCBPE were greatly affected by the second polyolefin but in different way, depending on the phase behavior and the moduli of the second components. SCBPE may be phase‐miscible in the melt with LDPE, HDPE, and EPDM but phase‐separated during crystallization. A big change in the crystal morphology and crystallization kinetics existed in the SCBPE/iPP blend. The mechanical properties of the blends were also researched with dynamic mechanical analysis (DMA). DMA results showed that the tensile modulus of the blends had nothing to do with the phase behavior but only depended on the modulus of the second component. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1816–1823;2005  相似文献   

12.
The relation between the dynamic mechanical properties and the morphology of polypropylene (PP) block copolymers and polypropylene/elastomer blends was studied by dynamic mechanical analysis (DMA), light- and electron microscopy. The latter techniques contributed to an improvement in assignments of relaxation transitions in the DMA spectra. It was established that PP block copolymers had multiphase structure since the ethylene/propylene rubber phase (EPR) formed in the copolymerization contained polyethylene (PE) domains. An identical morphology was found in the case of PP/polyolefin thermoplastic rubber (TPO) blends. Impact modification of PP by styrene/butadiene block copolymers led to a multiphase structure, too, due to the polystyrene (PS) domains aggregated in the soft rubbery polybutadiene phase. In the semicrystalline polyolefinic and in the amorphous styrene/butadienebased thermoplastic rubbers, PE crystallites and PS do mains acted as nodes of the physical network structure, respectively. PP/EPDM/TPO ternary blends developed for replacing high-density PE showed very high dispersion of the modifiers as compared to that of PP block copolymers. This fine dispersion of the impact modifier is a basic regulating factor of impact energy dissipation in the form of shear yielding and crazing.  相似文献   

13.
Poly(2,6‐dimethyl‐1,4‐phenylene oxide)/polyamide 6 (PPO/PA6 30/70) blends were impact modified by addition of three kinds of maleated polystyrene‐based copolymers, i.e., maleated styrene‐ethylene‐butylene‐styrene copolymer (SEBS‐g‐MA), maleated methyl methacrylate‐butadiene‐styrene copolymer (MBS‐g‐MA), and maleated acrylonitrile‐butadiene‐styrene copolymer (ABS‐g‐MA). The mechanical properties, morphology and rheological behavior of the impact modified PPO/PA6 blends were investigated. The selective location of the maleated copolymers in one phase or at interface accounted for the different toughening effects of the maleated copolymer, which is closely related to their molecular structure and composition. SEBS‐g‐MA was uniformly dispersed in PPO phase and greatly toughened PPO/PA6 blends even at low temperature. MBS‐g‐MA particles were mainly dispersed in the PA6 phase and around the PPO phase, resulting in a significant enhancement of the notched Izod impact strength of PPO/PA6 blends from 45 J/m to 281 J/m at the MBS‐g‐MA content of 20 phr. In comparison, the ABS‐g‐MA was mainly dispersed in PA6 phase without much influencing the original mechanical properties of the PPO/PA6 blend. The different molecule structure and selective location of the maleated copolymers in the blends were reflected by the change of rheological behavior as well. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
The phase morphology developing in immiscible poly(styrene‐co‐acrylonitrile) (SAN)/ethylene–propylene–diene monomer (EPDM) blends was studied with an in situ reactively generated SAN‐g‐EPDM compatibilizer through the introduction of a suitably chosen polymer additive (maleic anhydride) and 2,5‐dimethyl‐2,5‐di‐(t‐butyl peroxy) hexane (Luperox) and dicumyl peroxide as initiators during melt blending. Special attention was paid to the experimental conditions required for changing the droplet morphology for the dispersed phase. Two different mixing sequences (simple and two‐step) were used. The product of two‐step blending was a major phase surrounded by rubber particles; these rubber particles contained the occluded matrix phase. Depending on the mixing sequence, this particular phase morphology could be forced or could occur spontaneously. The composition was stabilized by the formation of the SAN‐g‐EPDM copolymer between the elastomer and addition polymer, which was characterized with Fourier transform infrared. As for the two initiators, the blends with Luperox showed better mechanical properties. Scanning electron microscopy studies revealed good compatibility for the SAN/EPDM blends produced by two‐step blending with this initiator. Dynamic mechanical thermal analysis studies showed that the two‐step‐prepared blend with Luperox had the best compatibility. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
In this work, the morphologies of polypropylene (PP)/ethylene‐propylene‐diene (EPDM) rubber/high density polyethylene (HDPE) 70/20/10 blends were studied and compared with the predictions of the spreading coefficient and minimum free energy models. The interfacial tension of PP/HDPE, PP/EPDM, and HDPE/EPDM blends were obtained by fitting the experimental dynamic storage modulus data to Palierne's theory. The prediction results showed core‐shell morphology (core of HDPE and shell of EPDM) in PP matrix. The PP/EPDM/HDPE blends were respectively prepared by direct extrusion and lateral injection method. Core‐shell morphology (core of HDPE and shell of EPDM) could be obtained with direct extrusion corresponding to the predicted morphology. The morphology of PP/EPDM/HDPE blends could be effectively controlled by lateral injection method. For PP/EPDM/HDPE blend prepared by lateral injection method, HDPE and EPDM phase were dispersed independently in PP matrix. It was found that the different morphology of PP/EPDM/HDPE blends prepared by two methods showed different rheological behavior. When the core‐shell morphology (core of HDPE and shell of EPDM) appeared, the EPDM shell could confine the deformation of HDPE core significantly, so the interfacial energy contribution of dispersed phase on the storage modulus of blends would be weaken in the low frequency region. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

16.
This article examines thermoplastic elastomers (TPEs) and thermoplastic vulcanizates (TPVs) as two types of elastomers from melt-blended and dynamically vulcanized ethylene–propylene–diene monomer (EPDM) rubber materials and nylon 6 plastic materials. A series of investigations were conducted on the mechanical properties, morphology, dynamic mechanical properties, hysteresis behavior, and dynamic antivibration properties with different nylon 6 contents. The experimental results showed that the incompatibility between EPDM and nylon 6 led to the easy destruction of the TPV materials in two interfacial polymers upon the application of an external force. Thus, after a dynamic vulcanization process, the mechanical properties of the EPDM/nylon 6 blends were not as good as those of the TPE materials. In terms of morphology, nylon 6 plastics were uniformly distributed in the EPDM/nylon 6 blends during the EPDM rubber phase before vulcanization was performed. After the dynamic vulcanization, phase inversion was produced in which rubber microparticles were formed and dispersed in the nylon 6 plastic phase. The results of dynamic mechanical analysis, compression vibration hysteresis behavior, and dynamic property antivibration experiments showed that the blends provided better vibration isolation and antivibration performance after the amount of nylon 6 was increased and EPDM and nylon 6 were blended through dynamic vulcanization. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

17.
Blends of ethylene–propylene–diene rubber (EPDM) and low density polyethylene (PEid) or isotactic polypropylene (iPP) crosslinked by dicumyl peroxide (DCP) have been prepared. Their morphology, reactivity of the components and crystallinity have been studied. The blends are microheterogeneous. Both plastomers, but particularly iPP, decrease the crosslinking efficiency of EPDM by DCP. It was found that they also influence the mechanical properties of the blends. The effect of iPP is far more pronounced than that of PEId, because of an increase in crystalline phase content. iPP particles play a role as nuclei for propylene monomer units in EPDM, whereas PEId particles are solvated by the elastomer matrix.  相似文献   

18.
Blends of maleated ethylene propylene diene rubber (EPDM) and thermoplastic polyurethane (TPU) have been studied to understand the effect of the maleation level of EPDM on the compatibility and morphology of the blends. Blends with different maleation levels on EPDM (0.25, 0.50, and 0.75 wt%) were compared for mechanical, thermal, and other properties. The appearance of single T g for 0.5% and 0.75% confirms that a maleation level of more than 0.5 wt% is required for EPDM blends with TPU. However, best mechanical properties are obtained for 0.5% maleated EPDM and TPU blends. Aging, filler reinforcement, and weather resistance measurements were also studied for the blends of varying maleation levels.  相似文献   

19.
During dynamic vulcanization of polypropylene (PP)/ethylene–propylene–diene terpolymer (EPDM) blends with dicumyl peroxide/triallyl cyanurate, there is a possibility of the generation of in situ graft links at the interface. Three potential compatibilizers (PP‐grafted EPDM, styrene–ethylenebutylene–styrene, and trans‐polyoctenamer) for PP/EPDM blends were first investigated as references to obtain a quantified insight into the effects to be expected from in situ graft links. Only the first compatibilizer showed some compatibilizing action in straight, unvulcanized blends, as evidenced by a slight increase in the tensile strength of the blend and a somewhat smaller EPDM particle size within the PP matrix. Also, dynamic mechanical testing, in particular, the glass‐transition temperatures of the PP and EPDM components, showed some signs of compatibilization. The PP‐grafted EPDM resembled most closely the structures of PP and EPDM. In the spectra obtained with high temperature, solid‐state NMR, there was an indication that PP–EPDM graft links were generated during the dynamic vulcanization process that still remained after the extraction of the free PP phase from the thermoplastic vulcanizate film. NMR relaxation experiments gave further evidence for the graft links formed in situ. In all cases, only qualitative indications could be achieved because of the extremely low number of graft links formed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3877–3888, 2006  相似文献   

20.
To overcome serious rigidity depression of rubber‐toughened plastics and fabricate a rigidity‐toughness balanced thermoplastic, a combination of styrene‐[ethylene‐(ethylene‐propylene)]‐styrene block copolymer (SEEPS) and ethylene‐propylene rubber (EPR) was used to toughen polypropylene. The dynamic mechanical properties, crystallization and melting behavior, and mechanical properties of polypropylene (PP)/EPR/SEEPS blends were studied in detail. The results show that the combination of SEEPS and EPR can achieve the tremendous improvement of low‐temperature toughness without significant strength and rigidity loss. Dynamic mechanical properties and phase morphology results demonstrate that there is a good interfacial strength and increased loss of compound rubber phase comprised of EPR component and EP domain of SEEPS. Compared with PP/EPR binary blends, although neither glass transition temperature (Tg) of the rubber phase nor Tg of PP matrix in PP/EPR/SEEPS blends decreases, the brittle‐tough transition temperature (Tbd) of PP/EPR/SEEPS blends decreases, indicating that the increased interfacial interaction between PP matrix and compound rubber phase is also an effective approach to decrease Tbd of the blends so as to improve low‐temperature toughness. The balance between rigidity and toughness of PP/EPR/SEEPS blends is ascribed to the synergistic effect of EPR and SEEPS on toughening PP. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45714.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号