首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
详细总结了双相不锈钢中475℃脆性的主要特征、影响因素以及其对性能的影响,包括:α′相的析出机制、动力学特征;合金元素、热加工工艺对α′相析出动力学的影响;475℃脆性对力学性能、腐蚀性能和居里温度的影响。  相似文献   

2.
含氮双相不锈钢及其冶金工艺   总被引:4,自引:0,他引:4  
李学锋  李正邦 《特殊钢》2006,27(4):36-38
铁素体-奥氏体双相不锈钢比奥氏体不锈钢有较高的机械性能、优良的耐应力腐蚀和点腐蚀性能以及较低的价格(Ni含量低),特别是通过降低钢中的碳含量和增加氮含量而改善了钢的可焊性。双相钢中含较高的氮含量有两个有利的因素:抑制δ-铁素体的形成和提高抗点蚀当量。介绍了4种不同类型的含氮双相不锈钢和常用双相不锈钢的牌号和化学成分、双相不锈钢5种冶金工艺、太钢双相不锈钢的生产、高氮双相不锈钢的形变热处理以及双相不锈钢的研究和发展趋势。  相似文献   

3.
经济型双相不锈钢的研发进展   总被引:1,自引:0,他引:1  
 经济型双相不锈钢是一种高性能低成本的氮合金化不锈钢新材料,具有典型的铁素体-奥氏体双相组织。利用氮取代镍元素的奥氏体化作用,降低成本的同时获得优良的力学性能和耐腐蚀性能。介绍了经济型双相不锈钢的发展历史,重点讨论了合金元素和热处理对相变、力学性能和耐腐蚀性能的影响规律,并与304和316进行对比;同时,分析了经济型双相不锈钢焊接性能和焊接工艺的研究进展。经济型双相不锈钢S32101、S32003、S32202等,已用于核电、桥梁、建筑、热交换器等行业,取代传统奥氏体不锈钢AISI 304和316。由于经济型双相不锈钢具有高强度和优良耐蚀性,同时镍、钼等贵金属的含量都较低,已成为未来不锈钢发展的方向之一。  相似文献   

4.
80 years has passed since duplex stainless steels were first produced and now they have developed into an integral series with the efforts on R & D and development of technology.In the recent decade, duplex stainless steels have been accepted by more and more customers and increasingly used. The first duplex grade produced in Sweden was 453E(26Cr-5Ni) in the 1930s,and then developed into 329.These two grades were characterized by high carbon content and called the first generation of duplex stainless steels.At that time,it was very difficult to add nitrogen into the steels and maintain the phase equilibrium,thus influencing the application properties,for example,intergranular corrosion post welding. One method to solve this problem is to alter the chemical composition,like adding nitrogen,etc.And that came to reality with the development of AOD and metallurgical theory of stainless steels.New series of duplex grades,called the second and third generations duplex,have successively emerged since the 1980s. These grades are characterized by high amounts of alloying elements,like chromium,molybdenum and nitrogen.Furthermore,super duplex stainless grades,like S32750,S32760 and S32707,were developed for various harsh service environments with their outstanding corrosion resistance and workability.These grades possess corrosion resistance corresponding to super austenitic grades,or close to nickel-base alloys, and are used in ocean-engineering,sea water desalination and oil industries,etc. And the application of duplex stainless steel is expending into other industries.For instance,453E is used in the pulp & paper industry.2205(S32205),a medium-alloyed grade,has become the most typical one in the duplex stainless steel family and widely used in many industries like pulp & paper,chemical and oil.New applications are emerging with better understanding of the duplex grades. Modern duplex stainless steels features most the corrosion resistance and strength,making them most cost-efficient in more and more projects. In this paper,the history of duplex stainless steels is recalled and reviewed from R&D,production to application,and latest grades like S82441 are also introduced.  相似文献   

5.
采用金相、扫描、X射线衍射和电化学等方法研究了合金元素对高氮不锈轴承钢组织性能的影响.结果表明:钢中加氮细化组织与碳化物,析出相尺寸随着氮含量的增加而降低.高氮不锈轴承钢1030、1050℃淬火后残余奥氏体体积分数达到20%~35%,而且碳氮含量越高,残余奥氏体越多.经冷处理及回火后残余奥氏体体积分数降至7%~10.3...  相似文献   

6.
A high strength steel with an austenite-martensite duplex microstructure has been produced by extruding nickel coated steel powder. The austenite is stable and is present as a continuous network surrounding a high strength martensite. The dual-phase steel exhibits superior resistance to stress corrosion cracking in 3.5 pct NaCl solution, compared with steels of similar strength having conventional microstructures. Also, the effectiveness of the austenite in improving stress corrosion cracking resistance increases as the yield strength increases. The austenite, because of its inherent toughness, reduces the effective stress intensity at the advancing crack tip, and at the same time shields the crack tip from the corrosive environment.  相似文献   

7.
Duplex stainless have always been an exiting area of interest for researchers, stainless steel producers, fabricators and end users. They present very diversified technical challenges and simultaneously attractive in‐service properties at excellent cost/properties ratios, particularly in critical markets including oil and gas, chemical industry, pulp and paper industry, water systems, desalination plants, pollution control equipments, chemical tankers, etc. This explains why although they still remain a marginal production in the stainless steel business (less than 1%) dedicated international conferences have been organised since about 25 years. The purpose of this paper is to present a review of the 100 scientific contributions presented during the latest international duplex stainless steel conference witch took place in Grado, Italy, on 18‐20 June 2007. The main topics concerned microstructure and mechanical properties, weldability, corrosion resistance and in‐service properties. The “standard” duplex stainless steels, i.e. the 2304, 2205, and the family of 2507 (Cu,W, ...) grades were confirmed as very valuable grades with outstanding performances proven in more than 20 years successful in‐service applications. New grades including the so‐called lean duplex dedicated to volume oriented markets (possible replacement of 304/316 grades) and some “niche” grades dedicated to very specific markets were presented. It was pointed out that the duplex grades start to be well established products particularly suitable for corrosion resistance applications. They show a two‐digit yearly growth thanks to the production of new grades and production ranges (coils and bars) targeting the replacement of the more costly 300 series including 304 but also rusty carbon steel in e.g. structural application.  相似文献   

8.
For many applications duplex stainless steels with their superior strength coupled with lower raw material cost have emerged as an attractive alternative to austenitic stainless steels. With emphasis on conservation of scarce resources like nickel and molybdenum there is continuing endeavour to develop essentially molybdenum free lean duplex stainless steels with low nickel content such as 2304 (23Cr–4Ni), 2202 (22Cr–2Ni), 2101 (21Cr–1.5Ni). This paper compares the corrosion behaviour of a low nickel duplex (21Cr–1.5Ni) and a nickel free duplex (21Cr–1.5Cu) with 316L stainless steel in several corrosive media. All the three alloys exhibit similar excellent corrosion resistance under boiling conditions in less aggressive organic acids such as 20 % acetic acid, 25 % lactic acid, 25 % citric acid. However, in stronger organic acids such as 5 % formic acid, 5 % oxalic acid, and mixture of formic and acetic acid, the duplex grades exhibit superior corrosion resistance. This edge over 316L continues on addition of chloride ions in these acids. In boiling 50 % nitric acid solution, the corrosion resistance of these nickel free and low nickel duplex is slightly better than 316L grade. Since 304L grade is generally used in nitric acid plants, tests were also conducted on 304L and these duplex grades were found to be more resistant. Similarly in 50 % phosphoric acid also, the duplex grades exhibit superior corrosion resistance compared to 316L grade. Alloying with nickel and molybdenum is known to give rise to significant improvement in corrosion resistance in this acid. However, even in the absence of these elements, the beneficial effect of higher chromium content is evident. Of all the inorganic acids, sulfuric acid is used in largest volume in the industries. Boiling tests in dilute 1 and 5 % H2SO4 indicate that nickel free copper bearing duplex is more resistant than low nickel duplex grade and vastly superior to 316L Thus nickel-free and low-nickel duplex stainless steels offer a very attractive combination of high corrosion resistance coupled with cost effectiveness in a wide variety of corrosive media.  相似文献   

9.
通过Thermo-Calc热力学计算、OM和FE-SEM观察、力学性能和腐蚀性能试验对不同固溶温度下的特超级双相不锈钢进行分析和研究。结果表明:σ相和非平衡氮化物是固溶水冷组织中的主要析出相,当固溶温度低于1050 ℃时,σ相优先沿双相界面析出,显著降低双相不锈钢的冲击韧性;当固溶温度高于1100 ℃,非平衡氮化物开始在铁素体晶粒内部析出,且随着固溶温度的升高,非平衡氮化物析出数量增加。这是由于固溶水冷过程中氮在铁素体中的溶解度快速降低,过饱和的氮来不及扩散到相邻奥氏体中,只能以氮化物的形式析出。随固溶温度升高,铁素体含量增加,奥氏体含量降低,实验钢的强度增加,冲击韧性降低。在1080~1120 ℃之间固溶时,双相比例接近1∶1,S32707特超级双相不锈钢具有优良的综合力学性能和耐晶间腐蚀性能。   相似文献   

10.
 双相不锈钢兼具奥氏体和铁素体不锈钢的优良性能,多用于船舶、化工、核反应等领域。为了进一步提高S32550双相不锈钢的力学性能和抗腐蚀性能,采用真空感应炉成功冶炼了S32550双相不锈钢,并研究了有无添加稀土铈对其锻造、轧制后的微观组织、夹杂物形貌及冲击性能的影响。结果表明,添加稀土铈可以细化组织晶粒,使形状分布不均匀的铁素体组织与奥氏体组织均匀化;改善夹杂物形貌分布大小,对有害夹杂MnS进行改质,降低硫含量,使多余硫元素与铈反应形成Ce2O2S、Ce2S2夹杂弥散分布在钢中;另外,添加稀土铈可以提高S32550双相不锈钢在室温和低温(-40、-20 ℃)下的冲击韧性,在低温下可出现韧窝带,降低冷脆效应对钢材的危害。  相似文献   

11.
李俊 《特殊钢》2012,33(4):64-66
研究了950~1 200℃60 min水冷的固溶处理对超级双相不锈钢S32750(/%:0.02C、0.49Si、1.03Mn、0.026S、0.001P、25.01 Cr、7.03Ni、3.80Mo、0.29N)12 mm板的组织、力学性能和耐蚀性的影响。结果表明,随固溶温度升高,钢中铁素体相增加,奥氏体相减少;在950℃加热时铁素体中析出大量σ-相,使钢的性能恶化,在1 050~1 100℃固溶处理后,钢中铁素体相和奥氏体相各占50%, S32750钢具有较好的综合力学性能和优良的耐蚀性能。  相似文献   

12.
不同冶金方法测定双相不锈钢中的二次相析出   总被引:1,自引:0,他引:1       下载免费PDF全文
双相不锈钢(DSS)的铁素体-奥氏体微观结构将良好的机械性能及抗腐蚀性能结合于一体,并且价格也非常具有竞争力。DSS的一个典型性质是其较高的抗点蚀性,这一特性使DSS适用于苛刻环境下的结构应用。然而,DSS的应用受限于危险金属相结构的易感性,从而对其冲击韧性和耐腐蚀性产生不利影响。此析出现象引起了人们的极大关注,并且不同析出次序(σ相,χ相和碳化物)也已被相继提出。本文综述了有关二次相形成的研究,并对最常用分析方法进行比较。对这些析出在连续冷却和等温处理(以定义时间和次序)条件下进行了考察。  相似文献   

13.
秦紫瑞  崔凯  郭宁  郭珊 《钢铁》1999,34(8):49-52,62
研究了新型双相铸造不锈钢的化学成分、组织及其腐蚀与磨蚀行为。结果表明,该钢在含有固相颗粒的高温碱介质中具有良好的耐腐蚀与耐磨蚀性能。此外,还具有较好的力学性能和铸造性能,而且成本较低,具有广阔的工业应用前景  相似文献   

14.
The effect of isothermal aging treatment on the mechanical and corrosion properties of 2205 duplex stainless steel was investigated by means of impact toughness test and micro-hardness measurement in combination with the critical pitting temperature( CPT) technique. The corresponding fractography of the steel was then observed after the impact toughness test. The results demonstrated that,at the critical temperature for precipitation of the sigma( σ) phase,e. g.,850 ℃,the impact toughness decreased rapidly and the micro-hardness increased gradually with increasing aging time. The CPT decreased from 61 to 15 ℃ as the aging time increased from 4 min to 8 h. In addition,optical microscopy,transmission electron microscope( TEM) and X-ray diffraction studies showed that the ferrite in the steel transformed into secondary austenite and σ phase.  相似文献   

15.
In recent years, weld cladding are being applied in numerous industries as cost effective engineering solution to use a surface protection layer to protect carbon steel against corrosion attack. The desirable characteristics of cladding alloy are reasonable strength, weldability, resistance to general and localized corrosion attack. The duplex stainless steel having all the desirable characteristic is the candidate material for cladding. However, duplex weld metals have not been studied in detail as duplex stainless steels. Consequently, the properties of duplex weld metals are less well known and only partially understood. In the present study, the properties of duplex weld deposits of the 22 % Cr, 10 % Ni, 3 % Mo, and 0.12 % N type using GMAW process have been investigated. In particular, the influence of welding heat input and shielding gas composition in GMAW process on weld deposit microstructure, impact toughness and resistance to pitting corrosion have been studied. It is observed that concentration of nitrogen of weld deposits influenced by both heat input and shielding gas composition exerted significant effect on microstructure, low temperature toughness and resistance to pitting corrosion.  相似文献   

16.
利用OM、SEM、XRD和电化学方法对X60N高氮不锈轴承钢(/%:0.63C,15.00Cr,0.61Mo,0.190N)进行组织观察、室温和高温力学性能及耐蚀性能研究.结果表明,钢中降碳加氮可显著降低粗大共晶碳化物的数量及尺寸,X60N钢加氮后的原始奥氏体晶粒尺寸及碳化物明显细化.X60N钢经1050 ℃奥氏体化淬...  相似文献   

17.
The correlation has been studied between the structure of a high-nitrogen austenitic Cr-Mn-N steel formed in the process of combined hardening treatment, including cold plastic deformation (CPD), and its mechanical and corrosion properties. The structure and properties of commercial high-nitrogen (0.8% N) 07Kh16AG13M3 steel is analyzed after rolling by CPD and aging at 500 and 800°C. It is shown that CPD of the steel occurs by dislocation slip and deformation twinning. Deformation twinning and also high resistance of austenite to martensitic transformations at true strains of 0.2 and 0.4 determine the high plasticity of the steel. The contribution of the structure imperfection parameters to the broadening of the austenite lines during CPD is estimated by X-ray diffraction. The main hardening factor is stated to be lattice microdistortions. Transmission electron microscopy study shows that heating of the deformed steel to 500°C leads to the formation of the intermediate CrN phase by a homogeneous mechanism, and the intermtallic χ phase forms along the austenite grain boundaries in the case of heating at 800°C. After hardening by all investigated technological schemes, exception for aging at 800°C, the steel does not undergo pitting corrosion and is slightly prone to a stress corrosion cracking during static bending tests, while aging at 800°C causes pitting corrosion at a pitting formation potential E pf = ?0.25 V.  相似文献   

18.
A new series of economical Mo-free duplex stainless steels 21.5Cr-3.5Ni-xW-0.2N(x=1.8-3.0,mass%) have been developed.The effects of W on mechanical properties and corrosion resistance were investigated,and the microstructures were analyzed by optical microscopy,X-ray diffraction,transmission electron microscopy and electron backscatter diffraction.The designed steels have a balanced ferrite-austenite relation and are free of sigma phase after solution treatment at 750-1 300℃for 30min followed by water-quenching,whereas a small number of Cr23 C6 precipitates were found after solution treatment at 750℃.After solution treatment at 1 050℃,the steel with 1.8%(mass percent)W exhibits the highest room temperature tensile strength due to the strongest work hardening effect, while the steel with 3.0%(mass percent)W exhibits the highest fracture elongation owing to the transformation-induced plasticity(TRIP)effect.The ductile-brittle transition(DBT)and martensite transformation are respectively found in the ferrite and austenite,which deteriorates the impact properties of the steels with the increase of W content.The corrosion resistance of the designed steels is improved with the increase of W content.The pitting resistance of austenite is obviously better than that of ferrite for the designed alloys.Among the designed steels,the steel with 1.8%(mass percent)W is found to be an optimum steel with excellent comprehensive properties and lowest production cost.  相似文献   

19.
高氮奥氏体不锈钢的研究进展   总被引:1,自引:0,他引:1  
高氮奥氏体不锈钢由于具有强度高、韧性好、无磁、耐腐蚀性能佳及晶间腐蚀敏感性低等诸多独特优点而得到越来越广泛的应用,但基础理论和制造技术方面的研究仍相对落后。文中分析了高氮奥氏体不锈钢的研发历程和冶金理论现状,综述了高氮奥氏体不锈钢的钢种、成分、制造工艺和力学性能,以及该钢的发展与展望。  相似文献   

20.
利用Thermo-Calc热力学计算软件得到S32760(022Cr25Ni7Mo3WCuN)超级双相不锈钢凝固过程中的相图,确定了S32760双相钢是FA (铁素体-奥氏体)凝固模式,通过改变奥氏体和铁素体的形成元素的含量,确定在不同的化学成分下的热加工性能、Cr2N和σ相析出温度,得到S32760双相钢热加工温度区间随着奥氏体形成元素C、N、Ni、Mn含量的增加而变大,随着铁素体形成元素Si、Cr、Mo含量的增加而减小,而W对热加工性能没有影响。根据热力学计算,确定了最优的化学成分(/%:0.022C,0.30Si,0.80Mn,25.60Cr,6.20Ni,0.54Cu,3.50Mo,0.54W,0.27N),S32760双相钢最佳热塑性温度为1195℃, Cr2N相的析出温度为1050℃, σ相析出温度为1020℃,热加工区间为145℃,并且通过了后续的现场实践验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号