首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Self‐assembled nanocrystal superlattices have attracted large scientific attention due to their potential technological applications. However, the nucleation and growth mechanisms of superlattice assemblies remain largely unresolved due to experimental difficulties to monitor intermediate states. Here, the self‐assembly of colloidal PbS nanocrystals is studied in real time by a combination of controlled solvent evaporation from the bulk solution and in situ small‐angle X‐ray scattering (SAXS) in transmission geometry. For the first time for the investigated system a hexagonal closed‐packed (hcp) superlattice formed in a solvent vapor saturated atmosphere is observed during slow solvent evaporation from a colloidal suspension. The highly ordered hcp superlattice is followed by a transition into the final body‐centered cubic superlattice upon complete drying. Additionally, X‐ray cross‐correlation analysis of Bragg reflections is applied to access information on precursor structures in the assembly process, which is not evident from conventional SAXS analysis. The detailed evolution of the crystal structure with time provides key results for understanding the assembly mechanism and the role of ligand–solvent interactions, which is important both for fundamental research and for fabrication of superlattices with desired properties.  相似文献   

2.
Compression of micropillars is followed in situ by a quick nanofocused X‐ray scanning microscopy technique combined with 3D reciprocal space mapping. Compared to other attempts using X‐ray nanobeams, it avoids any motion or vibration that would lead to a destruction of the sample. The technique consists of scanning both the energy of the incident nanofocused X‐ray beam and the in‐plane translations of the focusing optics along the X‐ray beam. Here, the approach by imaging the strain and lattice orientation of Si micropillars and their pedestals during in situ compression is demonstrated. Varying the energy of the incident beam instead of rocking the sample and mapping the focusing optics instead of moving the sample supplies a vibration‐free measurement of the reciprocal space maps without removal of the mechanical load. The maps of strain and lattice orientation are in good agreement with the ones recorded by ordinary rocking‐curve scans. Variable‐wavelength quick scanning X‐ray microscopy opens the route for in situ strain and tilt mapping toward more diverse and complex materials environments, especially where sample manipulation is difficult.  相似文献   

3.
An X‐ray detector with high sensitivity would be able to increase the generated signal and reduce the dose rate; thus, this type of detector is beneficial for applications such as medical imaging and product inspection. The inorganic lead halide perovskite CsPbBr3 possesses relatively larger density and a higher atomic number in contrast to its hybrid counterpart. Therefore, it is expected to provide high detection sensitivity for X‐rays; however, it has rarely been studied as a direct X‐ray detector. Here, a hot‐pressing method is employed to fabricate thick quasi‐monocrystalline CsPbBr3 films, and a record sensitivity of 55 684 µC Gyair?1 cm?2 is achieved, surpassing all other X‐ray detectors (direct and indirect). The hot‐pressing method is simple and produces thick quasi‐monocrystalline CsPbBr3 films with uniform orientations. The high crystalline quality of the CsPbBr3 films and the formation of self‐formed shallow bromide vacancy defects during the high‐temperature process result in a large µτ product and, therefore, a high photoconductivity gain factor and high detection sensitivity. The detectors also exhibit relatively fast response speed, negligible baseline drift, and good stability, making a CsPbBr3 X‐ray detector extremely competitive for high‐contrast X‐ray detections.  相似文献   

4.
The synthesis of 1,18‐nucleotide‐appended bolaamphiphiles (1 , 2 , 4 , and 6) is reported, in which a 3′‐phosphorylated guanidine, adenosine, thymidine, or cytidine is connected to each end of an octadecamethylene chain. Single‐component self‐assemblies and binary self‐assemblies with the complementary oligonucleotides dC 20 , dT 20 , dA 20 , and dG 20 are studied by atomic force microscopy, powder X‐ray diffraction analysis, temperature‐dependent UV absorption, circular dichroism, and attenuated total‐reflection Fourier‐transform infrared spectroscopy. The single‐component self‐assembly of 1 forms a two‐dimensional sheet, whereas the binary self‐assembly 1 / dC 20 gives helical nanofibers. Non‐helical nanofibers are observed for the single‐component self‐assemblies of 2 and 4 , and helical nanofibers form from the binary self‐assembly 2 / dT 20 . Interestingly, helical nanorod structures are obtained from the binary self‐assembly 4 / dA 20 , and the aligned nanorods form a nematic phase. The single‐component and binary self‐assemblies from 6 give unilamellar vesicles owing to a lack of stacking interaction between the cytosine moieties.  相似文献   

5.
Self‐assembly of block copolymers provides numerous opportunities to create functional materials, utilizing self‐assembled microdomains with a variety of morphology and periodic architectures as templates for functional nanofillers. Here new progress is reported toward the fabrication of thermally responsive and electrically conductive polymeric self‐assemblies made from a water‐soluble poly(thiophene) derivative with short poly(ethylene oxide) side chains and Pluronic L62 block copolymer solution in water. The structural and electrical properties of conjugated polymer‐embedded self‐assembled architectures are investigated by combining small‐angle neutron and X‐ray scattering, coarse‐grained molecular dynamics simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporating them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellar‐to‐lamellar phase transition defines the embedded conjugated polymer network. As a result, the conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. This study shows promise for enabling more flexibility in processing and utilizing water‐soluble conjugated polymers in aqueous solutions for self‐assembly based fabrication of stimuli‐responsive nanostructures and sensory materials.  相似文献   

6.
One of the fundamental challenges encountered in successful incorporation of directed self‐assembly in sub‐10 nm scale practical nanolithography is the process compatibility of block copolymers with a high Flory–Huggins interaction parameter (χ). Herein, reliable, fab‐compatible, and ultrafast directed self‐assembly of high‐χ block copolymers is achieved with intense flash light. The instantaneous heating/quenching process over an extremely high temperature (over 600 °C) by flash light irradiation enables large grain growth of sub‐10 nm scale self‐assembled nanopatterns without thermal degradation or dewetting in a millisecond time scale. A rapid self‐assembly mechanism for a highly ordered morphology is identified based on the kinetics and thermodynamics of the block copolymers with strong segregation. Furthermore, this novel self‐assembly mechanism is combined with graphoepitaxy to demonstrate the feasibility of ultrafast directed self‐assembly of sub‐10 nm nanopatterns over a large area. A chemically modified graphene film is used as a flexible and conformal light‐absorbing layer. Subsequently, transparent and mechanically flexible nanolithography with a millisecond photothermal process is achieved leading the way for roll‐to‐roll processability.  相似文献   

7.
Herein, an all‐solid‐state sequential self‐organization and self‐assembly process is reported for the in situ construction of a color tunable luminous inorganic/polymer hybrid with high direct piezoresponse. The primary inorganic self‐organization in solid polymer and the subsequent polymer self‐assembly are achieved at high pressure with the first utilization of piezo‐copolymer (PVDF‐TrFE) as the host matrix of guest carbon quantum dots (CQDs). This process induces the spontaneous formation of a highly ordered, microscale, polygonal, and hierarchically structured CQDs/PVDF‐TrFE hybrid with multicolor photoluminescence, consisting of very thermodynamic stable polar crystalline nanowire arrays. The electrical polarization‐free CQDs/PVDF‐TrFE hybrids can efficiently harvest the environmental available kinetic mechanical energy with a new large‐scale group‐cooperation mechanism. The open‐circuit voltage and short‐circuit current outputs reach up to 29.6 V cm?2 and 550 nA cm?2, respectively. The CQDs/PVDF‐TrFE–based hybrid nanogenerator demonstrates drastically improved durable and reliable features during the real‐time demonstration of powering commercial light emitting diodes. No attenuation/fluctuation of the electrical signals is observed for ≈10 000 continuous working cycles. This study may offer a new design concept for progressively but spontaneously constructing novel multiple self‐adaptive complex inorganic/polymer hybrids that promise applications in the next generation of self‐powered autonomous optoelectronic devices.  相似文献   

8.
On the basis of DNA self‐assembly, a thermal responsive polymer polypropylene oxide (PPO) is evenly inserted into a rigid 3D DNA network for the study of single molecular self‐collapsing process. At low temperature, PPO is hydrophilic and dispersed uniformly in the network; when elevating temperature, PPO becomes hydrophobic but can only collapse on itself because of the fixation and separation of DNA rigid network. The process has been characterized by rheological test and Small Angle X‐Ray Scattering test. It is also demonstrated that this self‐collapsing process is reversible and it is believed that this strategy could provide a new tool to study the nucleation‐growing process of block copolymers.  相似文献   

9.
The modernized use of nucleic acid (NA) sequences to drive nanostructure self‐assembly has given rise to a new class of designed nanomaterials with controllable plasmonic functionalities for broad surface‐enhanced Raman scattering (SERS)‐based bioanalysis applications. Herein, dual usage of microRNAs (miRNAs) as both valuable cancer biomarkers and direct self‐assembly triggers is identified and capitalized upon for custom‐designed plasmonic nanostructures. Through strict NA hybridization of miRNA targets, Au nanospheres selectively self‐assemble onto hollowed Au/Ag alloy nanocuboids with ideal interparticle distances (≈2.3 nm) for optimal SERS signaling. The intrinsic material properties of the self‐assembled nanostructures further elevate miRNA detection performance via nanozyme catalytic SERS signaling cascades. This enables fM‐level miR‐107 detection limit within a clinically‐relevant range without any molecular target amplification. The miRNA‐triggered nanostructure self‐assembly approach is further applied in clinical patient samples, and showcases the potential of miR‐107 as a non‐invasive prostate cancer diagnostic biomarker. The use of miRNA targets to drive nanostructure self‐assembly holds great promise as a practical tool for miRNA detection in disease applications.  相似文献   

10.
When nanocrystals self assemble into ordered superstructures they form functional solids that may inherit the electronical properties of the single nanocrystals. To what extent these properties are enhanced depends on the positional and orientational order of the nanocrystals within the superstructure. Here, the formation of micrometer‐sized free‐standing supercrystals of faceted 20 nm Bi nanocrystals is investigated. The self‐assembly process, induced by nonsolvent into solvent diffusion, is probed in situ by synchrotron X‐ray scattering. The diffusion‐gradient is identified as the critical parameter for controlling the supercrystal‐structure as well as the alignment of the supercrystals with respect to the substrate. Monte Carlo simulations confirm the positional order of the nanocrystals within these superstructures and reveal a unique orientation phase: the nanocrystal shape, determined by the atomic Bi crystal structure, induces a total of 6 global orientations based on facet‐to‐facet alignment. This parallel alignment of facets is a prerequisite for optimized electronic and optical properties within designed nanocrystal solids.  相似文献   

11.
High‐performance focusing of X‐rays requires the realization of very challenging 3D geometries with nanoscale features, sub‐millimeter‐scale apertures, and high aspect ratios. A particularly difficult structure is the profile of an ideal zone plate called a kinoform, which is manufactured in nonideal approximated patterns, nonetheless requires complicated multistep fabrication processes. Here, 3D fabrication of high‐performance kinoforms with unprecedented aspect ratios out of low‐loss plastics using femtosecond two‐photon 3D nanoprinting is presented. A thorough characterization of the 3D‐printed kinoforms using direct soft X‐ray imaging and ptychography demonstrates superior performance with an efficiency reaching up to 20%. An extended concept is proposed for on‐chip integration of various X‐ray optics toward high‐fidelity control of X‐ray wavefronts and ultimate efficiencies even for harder X‐rays. Initial results establish new, advanced focusing optics for both synchrotron and laboratory sources for a large variety of X‐ray techniques and applications ranging from materials science to medicine.  相似文献   

12.
Oxygen inhibition remains a challenge in photo‐curing technology despite the expenditure of considerable effort in developing a convenient, efficient, and low‐cost prevention method. Here, a novel strategy to prevent oxygen inhibition is presented; it is based on the self‐assembly of multifunctional nano‐photo‐initiators (F2‐POSS‐(SH)4‐TX/EDB) at the interface of air and the liquid monomer. These nano‐photo‐initiators consist of a thiol‐containing polyhedral oligomeric silsesquioxane (POSS) skeleton onto which fluorocarbon chains and thioxanthone and dimethylaminobenzoate (TX/EDB) photo‐initiator moieties are grafted. Real‐time Fourier‐transform infrared spectroscopy (FT‐IR) is used to investigate the photo‐polymerization of various acrylate monomers that are initiated by F2‐POSS‐(SH)4‐TX/EDB and its model analogues in air and in N2. FT‐IR results show that F2‐POSS‐(SH)4‐TX/EDB decreases the effects of oxygen inhibition. X‐ray photo‐electron spectroscopy and atomic force microscopy reveal that the self‐assembly of F2‐POSS‐(SH)4‐TX/EDB at the air/(liquid monomer) interface forms a cross‐linked top layer via thiol–ene polymerization; this layer acts as a physical barrier against the diffusion of oxygen from the surface into the bulk layer. A mismatch in the shrinkage between the top and bulk layers arise as a result of the different types of photo‐cross‐linking reactions. Subsequently, the surface develops a wrinkled pattern with a low surface energy. This strategy exhibits considerable potential for preventing oxygen inhibition, and the wrinkled pattern may prove very useful in photo‐curing technology.  相似文献   

13.
Temperature‐enhanced solvent vapor annealing (TESVA) is used to self‐assemble functionalized polycyclic aromatic hydrocarbon molecules into ordered macroscopic layers and crystals on solid surfaces. A novel C3 symmetric hexa‐peri‐hexabenzocoronene functionalized with alternating hydrophilic and hydrophobic side chains is used as a model system since its multivalent character can be expected to offer unique self‐assembly properties and behavior in different solvents. TESVA promotes the molecule's long‐range mobility, as proven by their diffusion on a Si/SiOx surface on a scale of hundreds of micrometers. This leads to self‐assembly into large, ordered crystals featuring an edge‐on columnar type of arrangement, which differs from the morphologies obtained using conventional solution‐processing methods such as spin‐coating or drop‐casting. The temperature modulation in the TESVA makes it possible to achieve an additional control over the role of hydrodynamic forces in the self‐assembly at surfaces, leading to a macroscopic self‐healing within the adsorbed film notably improved as compared to conventional solvent vapor annealing. This surface re‐organization can be monitored in real time by optical and atomic force microscopy.  相似文献   

14.
Self‐assembling peptide amphiphiles (PAs) can form hierarchically ordered membranes when brought in contact with aqueous polyelectrolytes of the opposite charge by rapidly creating a diffusion barrier composed of filamentous nanostructures parallel to the plane of the incipient membrane. Following this event, osmotic forces and charge complexation template nanofiber growth perpendicular to the plane of the membrane in a dynamic self‐assembly process. In this work, we show that this hierarchical structure requires massive interfacial aggregation of PA molecules, suggesting the importance of rapid diffusion barrier formation. Strong PA aggregation is induced here through the use of heparin‐binding PAs with heparin and also with polyelectrolytes of varying charge density. Small angle X‐ray scattering shows that in the case of weak PA‐polyelectrolyte interaction, membranes formed display a cubic phase ordering on the nanoscale that likely results from clusters of PA nanostructures surrounded by polyelectrolyte chains.  相似文献   

15.
Simultaneous precise localization and activity evaluation of a biomolecule in a single living cell is through an enzyme‐specific signal‐amplification process, which involves the localized, site‐specific self‐assembly, and activation of a presignaling molecule. The inactive presignaling tetraphenylethylene (TPE)‐peptide derivative, TPE‐YpYY, is nondetectable and highly biocompatible and these small molecules rapidly diffuse into living cells. Upon safely arriving at an active site, and accessing the catalytic pocket of an enzyme, TPE‐YpYY immediately and quantitatively accumulates in situ in response to enzymatic activity, forms an enzyme anchor TPE‐YYY nanoassembly, displays aggregation‐induced emission behavior, and finally lights up the active enzyme, indicating its activity, and allowing its status in living cells to be tracked. This simple and direct self‐portrait method can be used to monitor dynamic self‐assembly processes in individual living cells and may provide new insights that reveal undiscovered biological processes and that aid in developing biomedical hybrid devices. In the future, this strategy of molecular design can be further expanded to the noninvasive investigation of other bioactive molecules, thus facilitating quantitative imaging.  相似文献   

16.
Metal halide perovskites represent a family of the most promising materials for fascinating photovoltaic and photodetector applications due to their unique optoelectronic properties and much needed simple and low‐cost fabrication process. The high atomic number (Z) of their constituents and significantly higher carrier mobility also make perovskite semiconductors suitable for the detection of ionizing radiation. By taking advantage of that, the direct detection of soft‐X‐ray‐induced photocurrent is demonstrated in both rigid and flexible detectors based on all‐inorganic halide perovskite quantum dots (QDs) synthesized via a solution process. Utilizing a synchrotron soft‐X‐ray beamline, high sensitivities of up to 1450 µC Gyair?1 cm?2 are achieved under an X‐ray dose rate of 0.0172 mGyair s?1 with only 0.1 V bias voltage, which is about 70‐fold more sensitive than conventional α‐Se devices. Furthermore, the perovskite film is printed homogeneously on various substrates by the inexpensive inkjet printing method to demonstrate large‐scale fabrication of arrays of multichannel detectors. These results suggest that the perovskite QDs are ideal candidates for the detection of soft X‐rays and for large‐area flat or flexible panels with tremendous application potential in multidimensional and different architectures imaging technologies.  相似文献   

17.
The formation of ordered arrays of molecules via self‐assembly is a rapid, scalable route towards the realization of nanoscale architectures with tailored properties. In recent years, graphene has emerged as an appealing substrate for molecular self‐assembly in two dimensions. Here, the first five years of progress in supramolecular organization on graphene are reviewed. The self‐assembly process can vary depending on the type of graphene employed: epitaxial graphene, grown in situ on a metal surface, and non‐epitaxial graphene, transferred onto an arbitrary substrate, can have different effects on the final structure. On epitaxial graphene, the process is sensitive to the interaction between the graphene and the substrate on which it is grown. In the case of graphene that strongly interacts with its substrate, such as graphene/Ru(0001), the inhomogeneous adsorption landscape of the graphene moiré superlattice provides a unique opportunity for guiding molecular organization, since molecules experience spatially constrained diffusion and adsorption. On weaker‐interacting epitaxial graphene films, and on non‐epitaxial graphene transferred onto a host substrate, self‐assembly leads to films similar to those obtained on graphite surfaces. The efficacy of a graphene layer for facilitating planar adsorption of aromatic molecules has been repeatedly demonstrated, indicating that it can be used to direct molecular adsorption, and therefore carrier transport, in a certain orientation, and suggesting that the use of transferred graphene may allow for predictible molecular self‐assembly on a wide range of surfaces.  相似文献   

18.
The self‐assembly of nanoparticles is a challenging process for organizing precise structures with complicated and ingenious structures. In the past decades, a simple, high‐efficiency, and reproducible self‐assembly method from nanoscale to microscale has been pursued because of the promising and extensive application prospects in bioanalysis, catalysis, photonics, and energy storage. However, microscale self‐assembly still faces big challenges including improving the stability and homogeneity as well as pursuing new assembly methods and templates for the uniform self‐assembly. To address these obstacles, here, a novel silver‐coated nanopore is developed which serves as a template for electrochemically generating microcyclic structures of gold nanoparticles at micrometers with highly homogenous size and remarkable reproducibility. Nanopore‐induced microcyclic structures are further applied to visualize the diffusion profile of ionic flux. Based on this novel strategy, a nanopore could potentially facilitate the delivery of assembled structures for many practical applications including drug delivery, cellular detection, catalysis, and plasmonic sensing.  相似文献   

19.
Scintillators are widely utilized for radiation detections in many fields, such as nondestructive inspection, medical imaging, and space exploration. Lead halide perovskite scintillators have recently received extensive research attention owing to their tunable emission wavelength, low detection limit, and ease of fabrication. However, the low light yields toward X‐ray irradiation and the lead toxicity of these perovskites severely restricts their practical application. A novel lead‐free halide is presented, namely Rb2CuBr3, as a scintillator with exceptionally high light yield. Rb2CuBr3 exhibits a 1D crystal structure and enjoys strong carrier confinement and near‐unity photoluminescence quantum yield (98.6%) in violet emission. The high photoluminescence quantum yield combined with negligible self‐absorption from self‐trapped exciton emission and strong X‐ray absorption capability enables a record high light yield of ≈91056 photons per MeV among perovskite and relative scintillators. Overall, Rb2CuBr3 provides nontoxicity, high radioluminescence intensity, and good stability, thus laying good foundations for potential application in low‐dose radiography.  相似文献   

20.
Self‐assembly of nanoparticles (NPs) forming unique structures has been investigated extensively over the past few years. However, many self‐assembled structures by NPs are irreversible, because they are generally constructed using their suspensions. It is still challenging for NPs to reversibly self‐assemble in dry state, let alone of polymeric NPs with general sizes of hundreds of nm. Herein, this study reports a new reversible self‐assembly phenomenon of NPs in dry state, forming thermoreversible strip‐like supermolecular structures. These novel NPs of around 150 nm are perfluorinated surface‐undecenoated cellulose nanoparticles (FSU‐CNPs) with a core‐coronas structure. The thermoreversible self‐assembled structure is formed after drying in the air at the interface between FSU‐CNP films and Teflon substrates. Remarkably, the formation and dissociation of this assembled structure are accompanied by a reversible conversion of the surface hydrophobicity, film transparency, and anisotropic properties. These findings show novel feasibility of reversible self‐assembly of NPs in dry state, and thereby expand our knowledge of self‐assembly phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号