首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hybrid numerical method for modelling the evolution of sharp phase interfaces on fixed grids is presented. We focus attention on two‐dimensional solidification problems, where the temperature field evolves according to classical heat conduction in two subdomains separated by a moving freezing front. The enrichment strategies of the eXtended Finite Element Method (X‐FEM) are employed to represent the jump in the temperature gradient that governs the velocity of the phase boundary. A new approach with the X‐FEM is suggested for this class of problems whereby the partition of unity is constructed with C1(Ω) polynomials and enriched with a C0(Ω) function. This approach leads to jumps in temperature gradient occurring only at the phase boundary, and is shown to significantly improve estimates for the front velocity. Temporal derivatives of the temperature field in the vicinity of the phase front are obtained with a projection that employs discontinuous enrichment. In conjunction with a finer finite difference grid, the Level Set method is used to represent the evolution of the phase interface. An iterative procedure is adopted to satisfy the constraints on the temperature field on the phase boundary. The robustness and utility of the method is demonstrated with several benchmark problems of phase transformation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
We present a new approach based on coupling the extended finite element method (XFEM) and level sets to study surface and interface effects on the mechanical behavior of nanostructures. The coupled XFEM‐level set approach enables a continuum solution to nanomechanical boundary value problems in which discontinuities in both strain and displacement due to surfaces and interfaces are easily handled, while simultaneously accounting for critical nanoscale surface effects, including surface energy, stress, elasticity and interface decohesion. We validate the proposed approach by studying the surface‐stress‐driven relaxation of homogeneous and bi‐layer nanoplates as well as the contribution from the surface elasticity to the effective stiffness of nanobeams. For each case, we compare the numerical results with new analytical solutions that we have derived for these simple problems; for the problem involving the surface‐stress‐driven relaxation of a homogeneous nanoplate, we further validate the proposed approach by comparing the results with those obtained from both fully atomistic simulations and previous multiscale calculations based upon the surface Cauchy–Born model. These numerical results show that the proposed method can be used to gain critical insights into how surface effects impact the mechanical behavior and properties of homogeneous and composite nanobeams under generalized mechanical deformation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents mathematical derivation of enrichment functions in the extended finite element method for numerical modeling of strong and weak discontinuities. The proposed approach consists in combining the level set method with characteristic functions as well as domain decomposition and reproduction technique. We start with the simple case of a triangular linear element cut by one interface across which displacement field suffers a jump. The main steps towards the derivation of enrichment functions are as follows: (1) extension of the subfields separated by the interface to the whole element domain and definition of complementary nodal variables; (2) construction of characteristic functions for describing the geometry and physical field; (3) determination of the sets of basic nodal variables; (4) domain decompositions according to Step 3 and then reproduction of the physical field in terms of characteristic functions and nodal variables; and (5) comparison of the piecewise interpolations formulated at Steps 3 and 4 with the standard extended finite element method form, which yields enrichment functions. In this process, the physical meanings of both the basic and complementary nodal variables are clarified, which helps to impose Dirichlet boundary conditions. Enrichment functions for weak discontinuities are constructed from deeper insights into the structure of the functions for strong discontinuities. Relationships between the two classes of functions are naturally established. Improvements upon basic enrichment functions for weak discontinuities are performed so as to achieve satisfactory convergence and accuracy. From numerical viewpoints, a simple and efficient treatment on the issue of blending elements is also proposed with implementation details. For validation purposes, applications of the derived functions to heterogeneous problems with imperfect interfaces are presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
An algorithm which couples the level set method (LSM) with the extended finite element method (X‐FEM) to model crack growth is described. The level set method is used to represent the crack location, including the location of crack tips. The extended finite element method is used to compute the stress and displacement fields necessary for determining the rate of crack growth. This combined method requires no remeshing as the crack progresses, making the algorithm very efficient. The combination of these methods has a tremendous potential for a wide range of applications. Numerical examples are presented to demonstrate the accuracy of the combined methods. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
A parameterization level set method is presented for structural shape and topology optimization of compliant mechanisms involving large displacements. A level set model is established mathematically as the Hamilton–Jacobi equation to capture the motion of the free boundary of a continuum structure. The structural design boundary is thus described implicitly as the zero level set of a level set scalar function of higher dimension. The radial basis function with compact support is then applied to interpolate the level set function, leading to a relaxation and separation of the temporal and spatial discretizations related to the original partial differential equation. In doing so, the more difficult shape and topology optimization problem is now fully parameterized into a relatively easier size optimization of generalized expansion coefficients. As a result, the optimization is changed into a numerical process of implementing a series of motions of the implicit level set function via an existing efficient convex programming method. With the concept of the shape derivative, the geometrical non‐linearity is included in the rigorous design sensitivity analysis to appropriately capture the large displacements of compliant mechanisms. Several numerical benchmark examples illustrate the effectiveness of the present level set method, in particular, its capability of generating new holes inside the material domain. The proposed method not only retains the favorable features of the implicit free boundary representation but also overcomes several unfavorable numerical considerations relevant to the explicit scheme, the reinitialization procedure, and the velocity extension algorithm in the conventional level set method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
7.
The level set equation is a non‐linear advection equation, and standard finite‐element and finite‐difference strategies typically employ spatial stabilization techniques to suppress spurious oscillations in the numerical solution. We recast the level set equation in a simpler form by assuming that the level set function remains a signed distance to the front/interface being captured. As with the original level set equation, the use of an extensional velocity helps maintain this signed‐distance function. For some interface‐evolution problems, this approach reduces the original level set equation to an ordinary differential equation that is almost trivial to solve. Further, we find that sufficient accuracy is available through a standard Galerkin formulation without any stabilization or discontinuity‐capturing terms. Several numerical experiments are conducted to assess the ability of the proposed assumed‐gradient level set method to capture the correct solution, particularly in the presence of discontinuities in the extensional velocity or level‐set gradient. We examine the convergence properties of the method and its performance in problems where the simplified level set equation takes the form of a Hamilton–Jacobi equation with convex/non‐convex Hamiltonian. Importantly, discretizations based on structured and unstructured finite‐element meshes of bilinear quadrilateral and linear triangular elements are shown to perform equally well. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Nonlinear fracture analysis of rubber‐like materials is computationally challenging due to a number of complicated numerical problems. The aim of this paper is to study finite strain fracture problems based on appropriate enrichment functions within the extended finite element method. Two‐dimensional static and quasi‐static crack propagation problems are solved to demonstrate the efficiency of the proposed method. Complex mixed‐mode problems under extreme large deformation regimes are solved to evaluate the performance of the proposed extended finite element analysis based on different tip enrichment functions. Finally, it is demonstrated that the logarithmic set of enrichment functions provides the most accurate and efficient solution for finite strain fracture analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Level set methods have become an attractive design tool in shape and topology optimization for obtaining lighter and more efficient structures. In this paper, the popular radial basis functions (RBFs) in scattered data fitting and function approximation are incorporated into the conventional level set methods to construct a more efficient approach for structural topology optimization. RBF implicit modelling with multiquadric (MQ) splines is developed to define the implicit level set function with a high level of accuracy and smoothness. A RBF–level set optimization method is proposed to transform the Hamilton–Jacobi partial differential equation (PDE) into a system of ordinary differential equations (ODEs) over the entire design domain by using a collocation formulation of the method of lines. With the mathematical convenience, the original time dependent initial value problem is changed to an interpolation problem for the initial values of the generalized expansion coefficients. A physically meaningful and efficient extension velocity method is presented to avoid possible problems without reinitialization in the level set methods. The proposed method is implemented in the framework of minimum compliance design that has been extensively studied in topology optimization and its efficiency and accuracy over the conventional level set methods are highlighted. Numerical examples show the success of the present RBF–level set method in the accuracy, convergence speed and insensitivity to initial designs in topology optimization of two‐dimensional (2D) structures. It is suggested that the introduction of the radial basis functions to the level set methods can be promising in structural topology optimization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we introduce a new way to model damage growth in solids. A level set is used to separate the undamaged zone from the damaged zone. In the damaged zone, the damage variable is an explicit function of the level set. This function is a parameter of the model. Beyond a critical length, we assume the material to be totally damaged, thus allowing a straightforward transition to fracture. The damage growth is expressed as a level set propagation. The configurational force driving the damage front is non‐local in the sense that it averages information over the thickness in the wake of the front. The computational and theoretical advantages of the new damage model are stressed. Numerical examples demonstrate the capability of the new model to initiate cracks and propagate them even in complex topological patterns (branching and merging for instance). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
An approximate level set method for three‐dimensional crack propagation is presented. In this method, the discontinuity surface in each cracked element is defined by element‐local level sets (ELLSs). The local level sets are generated by a fitting procedure that meets the fracture directionality and its continuity with the adjacent element crack surfaces in a least‐square sense. A simple iterative procedure is introduced to improve the consistency of the generated element crack surface with those of the adjacent cracked elements. The discrete discontinuity is treated by the phantom node method which is a simplified version of the extended finite element method (XFEM). The ELLS method and the phantom node technology are combined for the solution of dynamic fracture problems. Numerical examples for three‐dimensional dynamic crack propagation are provided to demonstrate the effectiveness and robustness of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The optimization of a vibro‐acoustic problem is of main importance for passengers' comfort in transportation vehicles in terms of interior noise. Engineers use numerical tools to predict the response of this coupled problem, but it may lead to a prohibitive computational time. Based on FEM, this work aims at reducing the computational time. The first idea is to keep the same mesh of the acoustic cavity for all the structure configurations and to enrich the pressure approximation by using the extended FEM (XFEM). The enrichment is based on a Heaviside function completed at the structure tip by a continuous ramp function. The second idea is to build reduced basis. The structure basis is composed of its eigenmodes, whereas a modal synthesis method with a fixed interface is used to build the fluid basis. The interface DOFs are the enriched DOF of the XFEM, whereas the internal domain corresponds to the acoustic cavity with no structure. These two combined ideas enable to minimize the computational time in the study of the influence of the structure positions in an acoustic cavity. The method is implemented for shell structures embedded in a 3D acoustic domain. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Interface capturing methods using enriched finite element formulations are well suited for solving multimaterial transport problems that contain weak or strong discontinuities. The conformal decomposition FEM decomposes multimaterial elements of a non‐conforming background mesh into sub‐elements that conform to material interfaces captured using a level set method. As the interface evolves, interfacial nodes move, and background nodes may change material. The present work describes approaches for handling moving interfaces in the context of the conformal decomposition FEM for both weakly and strongly discontinuous fields. Dynamic discretization methods using extrapolation and moving mesh approaches are considered and developed with first‐order and second‐order time integration methods. The moving mesh approach is demonstrated to be a stable method that preserves both weak and strong discontinuities on a variety of one‐dimensional and two‐dimensional test problems, while achieving the expected second‐order error convergence rate in space and time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The extended finite element method (XFEM) is applied to the simulation of thermally stressed, cracked solids. Both thermal and mechanical fields are enriched in the XFEM way in order to represent discontinuous temperature, heat flux, displacement, and traction across the crack surface, as well as singular heat flux and stress at the crack front. Consequently, the cracked thermomechanical problem may be solved on a mesh that is independent of the crack. Either adiabatic or isothermal condition is considered on the crack surface. In the second case, the temperature field is enriched such that it is continuous across the crack but with a discontinuous derivative and the temperature is enforced to the prescribed value by a penalty method. The stress intensity factors are extracted from the XFEM solution by an interaction integral in domain form with no crack face integration. The method is illustrated on several numerical examples (including a curvilinear crack, a propagating crack, and a three‐dimensional crack) and is compared with existing solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
This paper discusses higher‐order extended finite element methods (XFEMs) obtained from the combination of the standard XFEM with higher‐order FEMs. Here, the focus is on the embedding of the latter into the partition of unity method, which is the basis of the XFEM. A priori error estimates are discussed, and numerical verification is given for three benchmark problems. Moreover, methodological aspects, which are necessary for hp‐adaptivity in XFEM and allow for exponential convergence rates, are summarized. In particular, the handling of hanging nodes via constrained approximation and an hp‐adaptive strategy are presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Within the context of the sintering process simulation, this paper proposes a numerical strategy for the direct simulation of the matter transport by surface diffusion, in two and three dimensions. The level set formulation of the surface diffusion problem is first established. The resulting equations are solved by using a finite element method. A stabilization technique is then introduced, in order to avoid the spurious oscillations of the grain boundary that are a consequence of the dependence of the surface velocity on the fourth‐order derivative of the level set function. The convergence and the accuracy of this approach are proved by investigating the change in an elliptic interface under surface diffusion. Cases in direct relation with the sintering process are analyzed besides: sintering between two grains of the same size or of two different sizes. Finally, 3D simulations involving a small number of particles show the ability of the proposed strategy to deal with strong deformations of the grain surface (formation of necks) and to access directly important parameters such as the closed porosity rate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
An algorithm to solve the inverse problem of detecting inclusion interfaces in a piezoelectric structure is proposed. The material interfaces are implicitly represented by level sets which are identified by applying regularization using total variation penalty terms. The inverse problem is solved iteratively and the extended finite element method is used for the analysis of the structure in each iteration. The formulation is presented for three-dimensional structures and inclusions made of different materials are detected by using multiple level sets. The results obtained prove that the iterative procedure proposed can determine the location and approximate shape of material sub-domains in the presence of higher noise levels.  相似文献   

18.
A novel enrichment function, which can model arbitrarily shaped inclusions within the framework of the extended finite element method, is proposed. The internal boundary of an arbitrary‐shaped inclusion is first discretized, and a numerical enrichment function is constructed ‘on the fly’ using spline interpolation. We consider a piecewise cubic spline which is constructed from seven localized discrete boundary points. The enrichment function is then determined by solving numerically a nonlinear equation which determines the distance from any point to the spline curve. Parametric convergence studies are carried out to show the accuracy of this approach compared with pointwise and linear segmentation of points for the construction of the enrichment function in the case of simple inclusions and arbitrarily shaped inclusions in linear elasticity. Moreover, the viability of this approach is illustrated on a neo‐Hookean hyperelastic material with a hole undergoing large deformation. In this case, the enrichment is able to adapt to the deformation and effectively capture the correct response without remeshing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
We consider a standard model for incompressible two‐phase flows in which a localized force at the interface describes the effect of surface tension. If a level set method is applied then the approximation of the interface is in general not aligned with the triangulation. This causes severe difficulties w.r.t. the discretization and often results in large spurious velocities. In this paper we reconsider a (modified) extended finite element method (XFEM), which in previous papers has been investigated for relatively simple two‐phase flow model problems, and apply it to a physically realistic levitated droplet problem. The results show that due to the extension of the standard FE space one obtains much better results in particular for large interface tension coefficients. Furthermore, a certain cut‐off technique results in better efficiency without sacrificing accuracy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we model holes and material interfaces (weak discontinuities) in two-dimensional linear elastic continua using the extended finite element method on higher-order (spectral) finite element meshes. Arbitrary parametric curves such as rational Bézier curves and cubic Hermite curves are adopted in conjunction with the level set method to represent curved interfaces. Efficient computation of weak form integrals with polynomial integrands is realized via the homogeneous numerical integration scheme—a method that uses Euler's homogeneous function theorem and Stokes' theorem to reduce integration to the boundary of the domain. Numerical integration on cut elements requires the evaluation of a one-dimensional integral over a parametric curve, and hence, the need to partition curved elements is eliminated. To improve stiffness matrix conditioning, ghost penalty stabilization and the Jacobi preconditioner are used. For material interface problems, we develop an enrichment function that captures weak discontinuities on spectral meshes. Taken together, we show through numerical experiments that these advances deliver optimal algebraic rates of convergence with h-refinement (p=1,2,…,5) and exponential rates of convergence with p-refinement (p=1,2,…,7) for elastostatic problems with holes and material inclusions on Cartesian pth-order spectral finite element meshes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号