首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dam releases used to create downstream flows that mimic historic floods in timing, peak magnitude and recession rate are touted as key tools for restoring riparian vegetation on large regulated rivers. We analysed a flood on the 5th‐order Green River below Flaming Gorge Dam, Colorado, in a broad alluvial valley where Fremont cottonwood riparian forests have senesced and little recruitment has occurred since dam completion in 1962. The stable post dam flow regime triggered the development of novel riparian communities with dense herbaceous plant cover. We monitored cottonwood recruitment on landforms inundated by a managed flood equal in magnitude and timing to the average pre‐dam flood. To understand the potential for using managed floods as a riparian restoration tool, we implemented a controlled and replicated experiment to test the effects of artificially modified ground layer vegetation on cottonwood seedling establishment. Treatments to remove herbaceous vegetation and create bare ground included herbicide application (H), ploughing (P), and herbicide plus ploughing (H + P). Treatment improved seedling establishment. Initial seedling densities on treated areas were as much as 1200% higher than on neighbouring control (C) areas, but varied over three orders of magnitude among the five locations where manipulations were replicated. Only two replicates showed the expected seedling density rank of (H + P) > P > H> C. Few seedlings established in control plots and none survived 1 year. Seedling density was strongly affected by seed rain density. Herbivory affected growth and survivorship of recruits, and few survived nine growing seasons. Our results suggest that the novel plant communities are ecologically and geomorphically resistant to change. Managed flooding alone, using flows equal to the pre‐dam mean annual peak flood, is an ineffective riparian restoration tool where such ecosystem states are present and floods cannot create new habitat for seedling establishment. This problem significantly limits long‐term river and riparian management options. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The Platte River in central Nebraska responded to water development by rapid channel narrowing and expansion of native riparian woodland. Woodland expanded most rapidly in the 1930s and 1950s; open channel and woodland area stabilized in the 1960s and have remained stable for most reaches into the mid-1990s, despite relatively low flows and infrequent peak flows in the past decade. Open channel area may have been maintained or increased under recent lower flows because of increased erodibility of the floodplain as it has aggraded, developed vertical banks and as its woodland vegetation has become older, sparser and less protective of banks. One section of the Platte River, near Grand Island, has disequilibrated in the past decade by undergoing a 10% loss of channel area. The reach occurs below an area where vegetation has been removed to increase open channel area for migrating whooping and sandhill cranes and other water birds. Vegetation clearing may have liberated excess sediment, locally aggraded the channel and stimulated tree and shrub recruitment. This management practice needs to be examined before it is used more widely in the Platte River. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
Most riparian trees are phreatophytic, water table‐dependent plants which broadly differ in their tolerance to drought and permanent flooding. In semi‐arid settings, as water is limiting, inundations may be regarded as inputs rather than stresses for the survival of phreatophytes. In this study, the mortality rates and abundances of Populus alba, P. nigra, Salix alba and local Tamarix spp. were examined in 43 plots with different hydrologic conditions distributed across the floodplain of a large semi‐arid and Mediterranean river, the Ebro River (Spain). The objectives were to determine hydrologic thresholds for the maintenance of declining populations of those species, while providing novel information on their phreatophytic nature, and to examine shifts in the species composition along hydrologic gradients. All species exhibited significant relationships between mortality rates and hydrologic variables (deepest water table—WT, flood duration—FD and flood frequency—FF). S. alba was found to be the species with lowest tolerance to drier conditions (hydrologic thresholds for maintaining a mortality rate <50%: WT > ?1.22 m; FD: out of observation range; FF > 5.4 events y?1), followed by P. nigra (WT > ?2.18 m; FD > 11.1%; FF > 3.8 events y?1), Tamarix spp. (WT > ?2.96 m; FD > 3.7%; FF > 2.5 events y?1) and P. alba (WT > ?3.45 m; FD > 1.7%; FF > 2.0 events y?1). Only a significant reduction in S. alba relative abundance was observed as conditions got drier. The results provided quantitative information useful to guide management plans for the protection of Mediterranean phreatophytic tree species from further degradation and suggested that eventual natural or regulation‐induced droughts and groundwater declines would accelerate the loss of all phreatophytic species, especially S. alba. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
We developed a mass balance flow model to reconstruct unregulated daily peak flows in the National Wild and Scenic reach of the Missouri River, Montana. Results indicated that although the observed frequency of large peak flows has not changed in the post‐dam period, their magnitude has been reduced from 40 to 50% as a consequence of flow regulation. Reductions in the magnitude of these flows should reduce the expected frequency of large flood‐pulses over a longer time‐scale. Results of a two‐dimensional hydraulic model indicated that limited cottonwood (Populus deltoides subsp. Monilifera) recruitment occurs at relatively small peak discharges, but to maximize establishment of cottonwoods in the Wild and Scenic reach, a threshold of 1850 m3/s would be necessary at the Virgelle gauge. Floods of this magnitude or greater lead to establishment of cottonwood seedlings above the zone of frequent ice‐drive disturbance. Restoring the frequency, magnitude, duration and timing of these flood pulses would benefit important natural resource values including riparian cottonwood forests and native fish species in the upper Missouri River basin. However, efforts to naturalize flow must be made in the context of a water management system that was authorized and constructed for the primary purposes of flood control, power generation and irrigation. Using the synthesized flow model and flood damage curves, we examined six scenarios for delivering flows ≥1850 m3/s to the Wild and Scenic reach. Whereas some scenarios appeared to be politically and economically infeasible, our analysis suggested that there is enough operational flexibility in the system to restore more natural flood pulses without greatly compromising other values. Published in 2002 by John Wiley & Sons, Ltd.  相似文献   

5.
The construction of dams significantly alters flow and sediment regimes with subsequent deleterious effects on the morphological and ecological character of rivers. Effective experimental floods can ameliorate the downstream geomorphic impacts of dams. The traditional view is that large floods are required to perform effective geomorphic work, and the geomorphic outcomes of small floods are often overlooked. Many river restoration frameworks do not consider small floods. Yet, there is evidence that the hydrological characteristics that ameliorate specific geomorphic impacts in a river are unique to each river, and a customised approach to setting the right mix of floods (including small experimental floods) is needed. In this study, we modify an existing flood effectiveness model developed for large floods, for determining the geomorphic effectiveness of small floods in a highly regulated Australian river. Two flood classes were added to the model (medium peak stream power and moderate total energy expenditure), and the flood power characteristics were rescaled to reflect the relative difference in the magnitude of the small floods and the magnitude of the geomorphic work performed. Using a step‐wise approach, this customised model determined the geomorphic effectiveness of small floods. The best flood for ameliorating the geomorphic impacts of flow regulation had medium to long duration (10 to 51 days), high peak unit stream power (77 to 123 Wm?2) and moderate to large total energy expenditure (78,600 to 342,320 × 103 J). This approach to determining flood effectiveness for small floods is applicable to other geomorphically impacted river channels downstream of dams and can be used to inform experimental flood releases for geomorphic outcomes.  相似文献   

6.
In dry ecoregions, trees are restricted to river valley floodplains where river water supplements the limited local precipitation. Around the Northern Hemisphere, cottonwoods, riparian poplars, are often predominant trees in floodplain forests and these ecological specialists require floods that create and saturate sand and gravel bars, enabling seedling recruitment. By pairing the interpretation of aerial photographs at approximately decade intervals with dendrochronology, we explored the coordination between river floods, geomorphic disturbance and colonization of plains cottonwoods (Populus deltoides) over eight meanders along the Red Deer River in the semi‐arid prairie of western Canada. This river has a relatively natural flow regime and minimal human alteration through the World Heritage Site of Dinosaur Provincial Park. We found that the 50‐year flood of 1954 increased channel migration and produced extensive accretion with downstream expansion of meander lobes and some channel infilling, which was followed by prolific cottonwood colonization. Those processes accompanied the major flood, while bank erosion and cottonwood losses were more gradual and continuous over the past half‐century. Results indicated even greater floodplain and woodland development after an earlier 100‐year flood in 1915. Each flood produced an arcuate band of mature cottonwoods and there were five to seven progressively older woodland bands across the floodplain, with each cottonwood age grouping increasing by about a half‐century. The 700 m wide floodplain was progressively reworked by the river through pulses of channel movement and floodplain and woodland development over approximately 250 years and correspondingly, the oldest cottonwoods were about 250 years old.  相似文献   

7.
In contrast to many other arid region rivers, streamflow in the South Platte River is heavily augmented by trans-basin water imports and irrigation return flows. Hydrological changes began in the 1880s, resulting in channel narrowing and the development of a continuous Populus-Salix forest by the mid-twentieth century. We assessed the composition, structure and regeneration status of the riparian forest and identified environmental variables affecting annual Populus deltoides tree growth. We sampled forest structure at four sites in 2015, and conducted dendroecological analysis at seven additional sites in 2019. The riparian forest was dominated by P. deltoides, which occurred at all sites, comprising 79% of total tree basal area and 62% of total tree density. Age structure data indicated ongoing though episodic recruitment of P. deltoides, at least over the past ~130 years. We tested 14 linear mixed effects models to describe the effect of climate and streamflow on individual tree growth (modeled as the log of BAI, n = 237 trees). The most parsimonious model selected with AICc explained 28.6% of BAI variability, and included hydrology and climate factors during the growing season (i.e., June–August streamflow, June–July PDSI), some aspects of off-season (i.e., previous November and March) streamflow, along with tree age and study site effects. The riparian forest developed in response to, and has been maintained by, current climate conditions and water management regimes. It may be negatively affected by future climate change and increased urban water demand in the basin.  相似文献   

8.
Changes in the faunal composition and density of communities of chironomid larvae were studied over a four year period in a newly regulated stream and compared with those in an adjacent unregulated stream, with a view to examining “stability” in contrasting environments. A total of 68 chironomid taxa were recorded from all sites. Faunal diversity was lowest closest to the dam and highest in the unregulated site. Within the study period values of H were highest in the fourth year of study (five years after dam closure). Species increments were tending to level out at the three totally regulated sites whereas at the partially regulated and unregulated sites new taxa continued to be recorded in samples. Clustering techniques and similarity indices clearly separated the study sites based on the composition of the chironomid fauna and there were indications that the unregulated sites were more variable in faunal composition between years than the regulated sites. The data are used to develop a conceptual model of fluctuations in faunal parameters under steady or reduced flow regimes. It is suggested that environmental stability brought about by regulation has structured the composition of the chironomid community and further that the changes occur very rapidly after impoundment. The model identifies key areas of faunal change and the question of environmental stability is discussed in relation to the scale of observation.  相似文献   

9.
The Bill Williams (Arizona) is a regulated dryland river that is being managed, in part, for biodiversity via flow management. To inform management, we contrasted riparian plant communities between the Bill Williams and an upstream free‐flowing tributary (Santa Maria). Goals of a first study (1996–1997) were to identify environmental controls on herbaceous species richness and compare richness among forest types. Analyses revealed that herbaceous species richness was negatively related to woody stem density, basal area and litter cover and positively related to light levels. Introduced Tamarix spp. was more frequent at the Bill Williams, but all three main forest types (Tamarix, Salix/Populus, Prosopis) had low understory richness, as well as high stem density and low light, on the Bill Williams as compared to the Santa Maria. The few edaphic differences between rivers (higher salinity at Bill Williams) had only weak connections with richness. A second study (2006–2007) focused on floristic richness at larger spatial scales. It revealed that during spring, and for the study cumulatively (spring and fall samplings combined), the riparian zone of the unregulated river had considerably more plant species. Annuals (vs. herbaceous perennials and woody species) showed the largest between‐river difference. Relative richness of exotic (vs. native) species did not differ. We conclude that: (1) The legacy of reduced scouring frequency and extent at the Bill Williams has reduced the open space available for colonization by annuals; and (2) Change in forest biomass structure, more so than change in forest composition, is the major driver of changes in plant species richness along this flow‐altered river. Our study informs dryland river management options by revealing trade‐offs that exist between forest biomass structure and plant species richness. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
We assessed the importance of flow regime to the success of native and non‐native fish species by analysing winter/spring seining data collected from 1987 to 1997 on the resident fish communities of the lower Tuolumne River, California. The data were analysed using regression models to predict the percentage of non‐native fish at a site. The regression models included various combinations of the variables longitudinal location of the site, mean April/May stream discharge in the year of sampling, and mean April/May stream discharge in the previous year. Comparison of the models indicated that the best model included longitudinal location and stream discharge in the previous year. This model is consistent with the hypothesis that flow in the previous year differentially affects reproductive success of native and non‐native species and thus the resulting community sampled in the following winter/spring. A detrended correspondence analysis of percentage abundance species data identified a co‐occurring group of native species and a co‐occurring group of non‐native species with the non‐native red shiner (Cyprinella lutrensis) grouping separately. The differing reproductive strategies of the species were consistent with the hypothesis concerning spawning success. Our results indicate that flow regime is an important determinant of the reproductive success of native and non‐native fish species in regulated rivers. Manipulations of flow regime are a potentially powerful tool for managing native fish species, but should be considered in combination with other restoration efforts and in the context of ecosystem restoration. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
The lowermost 20 km of the River Surna, north-western Norway receives cool water during summer from a hypolimnetic release mountain reservoir. The benthic fauna is completely dominated by insects. Benthic densities immediately below the power station are much lower than at all other localities. Although benthic densities increase downstream of the power station, they never exceed the densities above. The dominant insect group, chironomids, can be divided into four categories according to their abundance and distribution above and below the power station: (1) rare or absent above, but common or abundant below; (2) abundant or common above but rare or absent below; (3) slightly less abundant below; (4) unchanged abundance. No major differences in the species composition were recorded for stonefilies, mayflies and caddisflies.  相似文献   

12.
We compared beaver (Castor canadensis) foraging patterns on Fremont cottonwood (Populus deltoides subsp. wislizenii) saplings and the probability of saplings being cut on a 10 km reach of the flow‐regulated Green River and a 8.6 km reach of the free‐flowing Yampa River in northwestern Colorado. We measured the abundance and density of cottonwood on each reach and followed the fates of individually marked saplings in three patches of cottonwood on the Yampa River and two patches on the Green River. Two natural floods on the Yampa River and one controlled flood on the Green River between May 1998 and November 1999 allowed us to assess the effect of flooding on beaver herbivory. Independent of beaver herbivory, flow regulation on the Green River has caused a decrease in number of cottonwood patches per kilometre of river, area of patches per kilometre, and average stem density within cottonwood patches. The number of saplings cut per beaver colony was three times lower on the Green River than on the Yampa River but the probability of a sapling being cut by a beaver was still higher on the Green River because of lower sapling density there. Controlled flooding appeared to increase the rate of foraging on the Green River by inundating patches of cottonwood, which enhanced access by beaver. Our results suggest regulation can magnify the impact of beaver on cottonwood through interrelated effects on plant spatial distribution and cottonwood density, with the result that beaver herbivory will need to be considered in plans to enhance cottonwood populations along regulated rivers. Published in 2002 by John Wiley & Sons, Ltd.  相似文献   

13.
Large woody debris (LWD) is an important component of ecosystem structure and function in large floodplain rivers. We examined associations between LWD distribution and riparian land use, bank stabilization (e.g. riprap revetment), local channel geomorphology, and distance downriver from the dam in the Garrison Reach, a regulated reach of the upper Missouri River in North Dakota, USA. We conducted a survey of shoreline‐associated LWD in the reach during typical summer flow conditions. Reach‐wide LWD density was 21.3 pieces km?1 of shoreline, of which most pieces (39% ) were ‘beached’ between the waterline and the bankfull level, 31% of pieces had evidence of originating at their current location (anchored), 18% of pieces were in deep water (>1 m), and 13% were in shallow water. LWD density along unstabilized alluvial (sand/silt) shorelines (27.3 pieces km?1) was much higher than along stabilized shorelines (7.2 pieces km?1). LWD density along forested shorelines (40.1 pieces km?1) was higher than along open (e.g. rangeland, crop land; 9.2 pieces km?1) or developed (e.g. residential, industrial; 7.8 pieces km?1) shorelines. LWD density was highest overall along unstabilized, forested shorelines (45 pieces km?1) and lowest along open or developed shorelines stabilized with a blanket‐rock revetment (5.5 pieces km?1). Bank stabilization nearly eliminated the positive effect of riparian forest on LWD density. A predicted longitudinal increase in LWD density with distance from the dam was detected only for deep LWD (including snags) along unstabilized alluvial shorelines. Partial resurvey in the summer following the initial survey revealed a reduction in total LWD density in the reach that we attribute to an increase in summer flow between years. Changes in riparian management and land use could slow the loss of LWD‐related ecosystem services. However, restoration of a natural LWD regime in the Missouri River would require naturalization of the hydrograph and modification of existing bank stabilization and channel engineering structures. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
In 1986 research divers surveyed and mapped deep-water spawning redds of fall chinook salmon (Oncorhynchus tshawytscha) in selected sites within an impounded segment of the main-stem Columbia River, Washington State, U.S.A. In velocities over 3m s?1 and depths up to 11 m, two divers riding a manoeuvrable sled made cross-current transects communicating observations of substrate materials and deep-water spawning sites. Surface personnel tracked the position of the sled with a laser locating system that logged the information into data storage. Subsequently, the computerized data were translated into overlaying maps depicting location of redds, substrate materials, and depth contours. Deep-water spawning (>3m) occurred at most survey sites in velocities between 0.6 and 0.8m s?1. The average depth of spawning was 6.5 m, and the maximum was 9.1 m-deeper than the depth redds can normally be detected by aerial observation (3–4 m). Deep-water spawning ranged from none to substantial in areas of near identical physical characteristics. A method for estimating abundance and density of deep-water redds, based upon the data collected with this mapping technique, is presented. This study combined with current limited information concerning deep-water spawning suggests that up to 80 per cent of the escapement of fall chinook salmon in this reach may spawn in deep water.  相似文献   

15.
The effects of river damming on geomorphic processes and riparian vegetation were evaluated through field studies along the regulated Green River and the free‐flowing Yampa River in northwestern Colorado, USA. GIS analysis of historical photographs, hydrologic and sediment records, and measurement of channel planform indicate that fluvial processes and riparian vegetation of the two meandering stream reaches examined were similar prior to regulation which began in 1962. Riparian plant species composition and canopy coverage were measured during 1994 in 36, 0.01 ha plots along each the Green River in Browns Park and the Yampa River in Deerlodge Park. Detrended correspondence analysis (DCA) of the vegetation data indicates distinctive vegetation differences between Browns Park and Deerlodge Park. Canonical correspondence analysis (CCA) indicates that plant community composition is controlled largely by fluvial processes at Deerlodge Park, but that soil chemical rather than flow related factors play a more important role in structuring plant communities in Browns Park. Vegetation patterns reflect a dichotomy in moisture conditions across the floodplain on the Green River in Browns Park: marshes with anaerobic soils supporting wetland species (Salix exigua, Eleocharis palustris, Schoenoplectus pungens, and Juncus nodosus) and terraces having xeric soil conditions and supporting communities dominated by desert species (Seriphidium tridentatum, Sarcobatus vermiculatus, and Sporobolus airoides). In contrast, vegetation along the Yampa River is characterized by a continuum of species distributed along a gradual environmental gradient from the active channel (ruderal species such as Xanthium struminarium and early successional species such as S. exigua, Populus deltoides subsp. wislizenii, and Tamarix ramossissima) to high floodplain surfaces characterized by Populus forests and meadow communities. GIS analyses indicate that the channel form at Browns Park has undergone a complex series of morphologic changes since regulation began, while the channel at Deerlodge Park has remained in a state of relative quasi‐equilibrium with discharge and sediment regimes. The Green River has undergone three stages of channel change which have involved the transformation of the historically deep, meandering Green River to a shallow, braided channel over the 37 years since construction of Flaming Gorge Dam. The probable long‐term effects of channel and hydrologic changes at Browns Park include the eventual replacement of Populus‐dominated riparian forest by drought tolerant desert shrublands, and the enlargement of in‐channel fluvial marshes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
Artificial drainage canals are often dug in large river floodplains to prevent winter inundation when groundwater level increases. Nothing is known about the biodiversity of the interstitial fauna of these artificial aquatic systems. The water chemistry and interstitial fauna of four drainage canals along the River Rhône (dug 11–15 years ago) were sampled in July during 3 years (1995–1997). A total of 53 taxa were found, with both epigean and hypogean organisms, and some rare phreatobites previously considered as absent from this sector of the Rhône. The faunal assemblage is characterized by limited temporal variations between the 3 successive years. Differences in interstitial fauna composition between the four drainage canals were mostly linked to oxygen availability and to heterogeneity in water origin (true ground water or surface water infiltration through embankment). Low oxygen content results in poorly diversified assemblages, which are always dominated by the same small set of species. In contrast, heterogeneity in water origin resulted in elevated faunal diversity. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
Controlled water releases from reservoirs (i.e. artificial floods) are used as a management technique to remove fine sediments and detrital materials from spawning gravels, mobilize gravel bars and clear encroaching brush from stream banks. The effects of a managed release event on water quality were investigated on the lower Mokelumne River in the western Sierra Nevada, California. The managed release was characterized by an increase in flow over a 4‐day period (from 11 to 57 m3 s−1). Automatic pump samplers were used to collect samples for water quality from 0.7, 16.4, 37.4 and 54.4 km below Camanche Dam. These sampling sites provided water quality data for three distinct stream reaches: a gravel and sand‐textured substrate reach (0.7–16.4 km), a reach characterized by lentic conditions associated with a small reservoir (16.4–37.4 km), and fine sand and silt‐textured substrate reach (37.4–54.4 km). Water samples were analysed for total suspended solids (TSS), total nitrogen, ammonium (NH4‐N), nitrate (NO3‐N), total phosphorus, soluble reactive phosphorus (SRP), dissolved organic carbon (DOC), foecal coliforms and E. coli. Chemographs for all constituents exhibited spikes in concentration with each increase in streamflow for the rising limb. Fluxes of TSS, total P and total N released from the 0.7 to 16.4 km reach were 322, 0.32 and 0.70 Mg, respectively. The small reservoir acted as a sink for particulate materials retaining about 50% of TSS, 48% of total P and 43% of total N. However, the reservoir acted as a source of dissolved nutrients (NO3‐N = 0.28 Mg and SRP = 0.055 Mg). The stream reach below the reservoir (37.4 to 54.4 km) was a source of particulate materials, dissolved nutrients and bacteria, possibly due to agricultural and urban inputs. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Widespread hydrologic alterations have simplified in-stream habitats in rivers globally, driving population declines and extirpations of many native fishes. Here, we examine how rapid geomorphic change in a historically degraded desert river has influenced habitat diversification and ecosystem persistence. In 2010, a large reach of the degraded and simplified lower San Rafael River (SRR), Utah, was impacted by the formation of a valley plug and began to shift from a homogenous, single-thread channel to a complex, multi-threaded riverscape. We combined field measurements and drone-collected imagery to document changes in fish habitat due to the valley plug. Our results demonstrate that in 2021, the affected reach was more diverse than any other stream reach along the SRR, containing 641% more diverse habitat (e.g., pools, riffles, and backwaters) than what was measured in 2015. The plug reach also retained water for periods beyond what was expected during seasonal drying, with the total extent of inundation within the riverscape increasing by over 2800%. Since the formation of the valley plug, riparian habitat has increased by 230% and channel networks have expanded to more than 50 distinct channels throughout the zone of influence. Our results provide evidence of successful self-restoration in a formerly highly degraded reach of desert river, and encourage new methods of desert river restoration. We aim to inform the use of large-scale, disruptive restoration actions like intentional channel occlusions, with the goal of mitigating the impacts of simplification and increasing habitat persistence in the face of exacerbated aridity in the desert Southwest.  相似文献   

19.
Access to offstream habitats is vital for many freshwater fish, but details of their lateral movements are scarce. We describe the movements of fish between the channel of the River Murray and six perennially inundated wetlands in South Australia from August to November 2006. At this time there were unprecedented low flows in the river owing to the combined effects of river regulation, drought and over‐allocation to upstream users. Some 210 000 fish from 18 species (14 native, 4 alien) were recorded, including two uncommon native species listed by conservation agencies. Movements of juveniles and adults varied among wetlands despite the shared river reach and the proximity of the wetlands to each other, but showed no consistent directionality. This may reflect the prevailing low‐flow conditions, the virtually permanent connections between the wetlands and channel maintained by weirs, levees and barrages, and the dominance of ‘generalist’ species. We speculate that movements facilitate efficient resource utilization and nutrient exchange between homogenized river and wetland habitats in the absence of the flood‐pulse. We anticipate directional movements will become apparent when flows are increased, so that our data could provide a comparative baseline for future studies. As modifications to natural flow paths may impede access to/from wetlands by fish and other aquatic fauna, provisions for access should be incorporated into flow‐control structures, used locally to manipulate wetland hydrology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
As global climate change affects recharge and runoff processes, stream flow regimes are being altered. In the American Southwest, increasing aridity is predicted to cause declines in stream base flows and water tables. Another potential outcome of climate change is increased flood intensity. Changes in these stream flow conditions may independently affect vegetation or may have synergistic effects. Our goal was to extrapolate vegetation response to climate‐linked stream flow changes, by taking advantage of the spatial variation in flow conditions over a 200 km length of the San Pedro River (Arizona). Riparian vegetation traits were contrasted between sites differing in low‐flow hydrology (degree of stream intermittency) and flood intensity (stream power of the 10‐year recurrence flood). Field data indicate that increased stream intermittency would cause the floodplain plant community to shift from hydric pioneer trees and shrubs (Populus, Salix, Baccharis) towards mesic species (Tamarix). This shift in functional type would produce changes in vegetation structure, with reduced canopy cover and shorter canopies at drier sites. Among herbaceous species, annuals would increase while perennials would decrease. If flood intensities increased, there would be shifts towards younger tree age, expansion of xeric pioneer shrubs (in response to flood‐linked edaphic changes), and replacement of herbaceous perennials by annuals. Woody stem density would increase and basal area would decrease, reflecting shifts towards younger forests. Some effects would be compounded: Annuals were most prevalent, and tree canopies shortest, at sites that were dry and intensely flooded. Vegetational changes would feedback onto hydrologic and geomorphic processes, of importance for modeling. Increased flood intensity would have positive feedback on disturbance processes, by shifting plant communities towards species with less ability to stabilize sediments. Feedbacks between riparian vegetation and stream low‐flow changes would be homeostatic, with reduced evapotranspiration rates ameliorating declines in base flows arising from increased aridity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号