首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Large wood, both live and dead, is essential for producing complex habitat in many streams, especially in forested watersheds that support salmonid populations. The addition of engineered wood structures is a common approach taken in many streams where past watershed management practices have resulted in reduced wood loading. We examined six 300‐m stream reaches in the Lagunitas Creek watershed, Northern California, to determine (i) the distribution of large wood in the bankfull channel and 10‐year floodplain, (ii) the influence of large wood on the size and distribution of pools and (iii) whether streams with engineered wood structures had greater diversity of pool habitat to support salmonid populations. We found that the amount of large wood in the bankfull channel and the amount available for recruitment from the 10‐year floodplain were highly variable among and within reaches examined and largely dependent on the local geomorphic setting. Stream reaches with engineered wood structures had elevated pool frequencies relative to reaches without these structures, suggesting a higher capacity to support salmonids during critical life stages. Among large wood pieces that had a strong influence on pool formation, 23% had an attached root wad and 66% were part of a cluster. All of the study reaches we examined had lower volumes of large wood in their bankfull channels than similar stream types with natural wood‐loading levels, suggesting that increased additions of large wood could provide ecosystem benefits over time. These principles can be understood and transferred effectively to other watersheds using a framework of wood‐loading process domains. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Large woody debris (LWD) can increase stream habitat heterogeneity by providing structure, altering flow patterns, enhancing sediment deposition, forming pools and retaining organic matter. In North America, the role of LWD has been studied extensively in streams of mature forests (e.g. Pacific Northwest), but few studies have assessed LWD in streams of younger forests (e.g. Midwestern USA). Our objectives were to: (1) quantify the volume and abundance of LWD in a set of Midwestern streams; (2) evaluate possible factors influencing LWD quantity; (3) identify the functional roles of LWD; and (4) compare LWD levels in the upper Midwest to those elsewhere in North America. In 2002 and 2003, we measured LWD and geomorphological variables in 15 low‐gradient streams draining previously logged watersheds in the Upper Peninsula of Michigan. Mean (±SE) LWD volume (0.77 ± 0.12 m3 100 m−2) and abundance (33 ± 3 pieces 100 m−1) were 71% and 10% lesser, respectively, than in streams of similar gradient elsewhere in North America. Channel shape (width:depth ratio) explained 30% of the variation in LWD volume (multiple stepwise regression, P = 0.015) while LWD length and length:channel width combined, explained 72% of the variation in LWD density (multiple stepwise regression, P < 0.0001). About 50% of the LWD either stored sediment or stabilized banks and 14% of the LWD formed pools, although pool density was not significantly related to LWD volume or density. LWD levels, overall, were low in upper Midwestern streams, but the relative importance of that LWD to ecosystem function may be magnified in these wood‐poor systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Large woody debris (LWD) significantly influences the structure and function of small headwater streams. However, what it contributes to geomorphic function depends on where it is located relative to the stream channel. We quantified LWD abundance and tested for associations among decay, position, orientation and function classes in 21 streams near Hinton, Alberta, Canada. LWD was more frequent (64.0 ± 3.3 LWD 100 m?1) in streams in the Alberta foothills than it was in small streams in mountain, coastal, broadleaf deciduous and boreal forests, likely due to the narrow channel widths and low capacity of our study streams to transport logs downstream. LWD volumes were greater in coastal streams than in the Alberta foothills, likely due to differing tree sizes and decay rates. LWD morphology changed significantly as logs decayed and transitioned to different position and orientation classes. LWD in decay classes I and II were longest, most commonly in the bridge and partial bridge position classes, oriented perpendicular to stream flow, suspended above the channel and contributing least to stream geomorphic functions. LWD length and volume (but not diameter) decreased as decay advanced, making logs less stable. LWD in decay classes III and IV were strongly associated with partially bridged, loose, and buried position classes. They were more commonly diagonal or parallel to stream flow and contributed to bank stability, sediment retention, debris jams and riffle and pool formations. These results have been integrated into a conceptual model of LWD dynamics that provides a framework for future research on the mechanisms and rates of LWD recruitment, decay, transport and function. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Large woody debris (LWD) is an important ecological element in rivers and streams. Despite its importance, LWD is often removed from urban stream channels for flood control or road maintenance purposes, an approach with high economic and ecological costs and one that is largely unsuccessful. We propose an approach to conserve LWD in channels by modifying infrastructure (culverts and bridges) to allow LWD passage, maintaining aquatic habitat and reducing flooding and road maintenance costs. In Soquel Creek (California, USA), which has a history of LWD‐related flooding, we compared long‐term LWD management costs of historical, current and a LWD‐passing approach whereby infrastructure is enlarged to accommodate LWD passage downstream. We estimated costs of infrastructure replacement, programmatic flood control (LWD removal), LWD‐related flood damage and lost aquatic habitat. The amount of lost aquatic habitat was determined by comparing LWD loading (pieces m?1) in Soquel Creek (0.007 pieces m?1) to nearby unmanaged streams (0.054 to 0.106 pieces m?1). Estimated costs of infrastructure able to pass LWD were nearly double that of historical costs but comparable to current costs. The LWD‐passing approach was comparable to removal approaches in the short term (1 to 50 years) but much less in the long term (51 to 100 years), as expenditures in infrastructure replacement to accommodate LWD yielded reductions in flooding costs and habitat loss. Given the urgency to maintain and restore aquatic habitat, the proposed approach may be broadly applicable. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Large woody debris (LWD) is an important component of ecosystem structure and function in large floodplain rivers. We examined associations between LWD distribution and riparian land use, bank stabilization (e.g. riprap revetment), local channel geomorphology, and distance downriver from the dam in the Garrison Reach, a regulated reach of the upper Missouri River in North Dakota, USA. We conducted a survey of shoreline‐associated LWD in the reach during typical summer flow conditions. Reach‐wide LWD density was 21.3 pieces km?1 of shoreline, of which most pieces (39% ) were ‘beached’ between the waterline and the bankfull level, 31% of pieces had evidence of originating at their current location (anchored), 18% of pieces were in deep water (>1 m), and 13% were in shallow water. LWD density along unstabilized alluvial (sand/silt) shorelines (27.3 pieces km?1) was much higher than along stabilized shorelines (7.2 pieces km?1). LWD density along forested shorelines (40.1 pieces km?1) was higher than along open (e.g. rangeland, crop land; 9.2 pieces km?1) or developed (e.g. residential, industrial; 7.8 pieces km?1) shorelines. LWD density was highest overall along unstabilized, forested shorelines (45 pieces km?1) and lowest along open or developed shorelines stabilized with a blanket‐rock revetment (5.5 pieces km?1). Bank stabilization nearly eliminated the positive effect of riparian forest on LWD density. A predicted longitudinal increase in LWD density with distance from the dam was detected only for deep LWD (including snags) along unstabilized alluvial shorelines. Partial resurvey in the summer following the initial survey revealed a reduction in total LWD density in the reach that we attribute to an increase in summer flow between years. Changes in riparian management and land use could slow the loss of LWD‐related ecosystem services. However, restoration of a natural LWD regime in the Missouri River would require naturalization of the hydrograph and modification of existing bank stabilization and channel engineering structures. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Woody debris has several important roles in running water. Less is known about the ecology of wood in great rivers than in smaller rivers and streams. We used a probability survey to estimate the abundance of littoral and shoreline wood along the following mid‐continent great rivers of the United States in summer 2004–2006: the Missouri River, Upper Mississippi River, and the Ohio River. We counted wood pieces >0.3 m in diameter from a zone between the bank full level out into the river 10 m. We categorized wood according to its origin and function as “beached” (transported from upriver but not providing aquatic habitat), “wet” (origin unknown and providing aquatic habitat; includes snags), or “anchored” (attached to the bank at its current location and providing aquatic habitat). We counted 5900 pieces of wood at 447 sites across rivers. Approximately 56 percent of pieces were beached, 30 percent were wet, and 14 percent were anchored. Overall, mean abundance of wood was 2.6 pieces of wood 100 m?1 of shoreline (approximately 3.0 m3 100 m?1). Abundance of wood (pieces per unit distance of river) was much lower than has been reported for many smaller streams and rivers. There was more wood along the Upper Mississippi River (3.3 pieces 100 m?1) than elsewhere (≤2.4 pieces 100 m?1). The mean abundance of wood on the Ohio River decreased significantly between the 2004 and 2005 survey periods due to high flows. Longitudinal patterns in wood abundance were weak. There was less anchored and wet wood along shorelines protected by revetment (e.g., rip rap). There was generally more wood along shorelines where the riparian land use was characterized as forest rather than agriculture or developed. Mean abundance of wood along forested, un‐revetted shorelines was approximately four pieces 100 m?1 of shoreline (= 80 pieces km?1 of river). This estimate of mean wood abundance for what amounts to least disturbed riparian and shoreline conditions is relevant for great river bioassessment and management. Published in 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The recruitment of wood from the riparian zone to rivers and streams provides a complex habitat for aquatic organisms and can influence both aquatic biodiversity and ecosystem function. The Daly River in the wet–dry tropics of northern Australia is a highly seasonal, perennially flowing sand‐bed river where surveys of river wood aggregations at the reach scale (~2 km) in 2008 and 2009 recorded densities of 37–78 km?1 and identified distinct types of river wood aggregations: key pieces, standing trees, fallen trees, wrack and single pieces. After larger than average flows in the 2008/2009 wet season, between 46% and 51% of the surveyed river wood had moved. The distribution of wood age classes indicated continual recruitment and slow turnover of wood within the river. Surveys of fish and habitat characteristics at the mesohabitat scale (~100 m) showed fish species richness; diversity and fish abundance were not correlated to the proportion of wood present. Fish assemblage structure was associated with wood cover as well as other environmental variables such as stream width and depth. The importance of in‐stream wood also varied for different species and age classes of fish. This study documents the dynamic nature of river wood aggregations and their complex and variable distribution and suggests their importance as fish habitat in this tropical river. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Many streams have been modified so extensively that river managers do not have clear reference conditions to frame targets for stream restoration. Large woody debris (LWD) has long been recognized as an important influence on both geomorphic and ecologic processes in stream channels; however, there have been few studies of LWD dynamics in New England. Although this region is heavily forested today, the forest is predominantly young (70–90 years old) regrowth following a historical episode of severe deforestation. This study presents the results of an extensive census of LWD and associated stream characteristics in over 16 river kilometres of northeastern Connecticut streams and represents the first reported inventory of wood loading and sorting in Southern New England. Results of this study indicate that wood loading and jam frequencies in the study region are low: 2.5–17.8 and 0.5–5.51 per 100 m, respectively. Orientation of LWD is predominantly parallel to flow, an indication that these streams are not retaining organic matter or sediment, which has important geomorphic and ecologic implications. Results imply that stream recruitment of LWD is still lagging from the massive forest conversions of the 18th and 19th centuries. Given the low wood loadings observed in the study reaches, manual wood addition and continued forest regeneration would likely improve both habitat diversity and organic matter and fine sediment retention in these systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
It has long been known that large wood in rivers increases channel complexity and is a primary driver of geomorphic change in forested mountain streams in the Pacific Northwest. Studies analyzing the presence and distribution of fluvial wood are often limited in their spatial extents to the site or reach scales because of the intensive fieldwork required for comprehensive wood surveys. Remote sensing techniques are beginning to allow researchers to assess fluvial wood dynamics and distributions on a basin or regional scale. We used 2009 high‐resolution light detection and ranging (LiDAR) point cloud data to detect and quantify wood within five forested watersheds in the Oregon Coast Range. We filtered the LiDAR data to remove the forest canopy over the stream channel and visually inventoried fluvial wood based on its distinct shape within the channels. We derived several wood and stream morphometric variables to test theories relating to wood abundance and positioning in the lower reaches of streams. We were able to detect fluvial wood with confidence; however, validation of results with ground‐truth data was difficult in the study due to the dynamic and mobile nature of wood through time. We mapped a total of 163 single logs and 55 logjams within the five study watersheds. We did not find statistically significant differences between individual pieces and jam positioning in relation to slope; however, the surveyed wood was often found in areas of lower stream power. This research shows that it is possible to use height‐filtered LiDAR to detect in‐stream wood in densely forested watersheds and has the potential to be employed in future wood studies across broad spatial scales. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In‐channel large woody debris (LWD) promotes quality aquatic habitat through sediment sorting, pool scouring and in‐stream nutrient retention and transport. LWD recruitment occurs by numerous ecological and geomorphic mechanisms including channel migration, mass wasting and natural tree fall, yet LWD sourcing on the watershed scale remains poorly constrained. We developed a rapid and spatially extensive method for using light detection and ranging data to do the following: (i) estimate tree height and recruitable tree abundance throughout a watershed; (ii) determine the likelihood for the stream to recruit channel‐spanning trees at reach scales and assess whether mass wasting or channel migration is a dominant recruitment mechanism; and (iii) understand the contemporary and future distribution of LWD at a watershed scale. We utilized this method on the 78‐km‐long Narraguagus River in coastal Maine and found that potential channel‐spanning LWD composes approximately 6% of the valley area over the course of the river and is concentrated in spatially discrete reaches along the stream, with 5 km of the river valley accounting for 50% of the total potential LWD found in the system. We also determined that 83% of all potential LWD is located on valley sides, as opposed to 17% on floodplain and terrace surfaces. Approximately 3% of channel‐spanning vegetation along the river is located within one channel width of the stream. By examining topographic and morphologic variables (valley width, channel sinuosity, valley‐side slope) over the length of the stream, we evaluated the dominant recruitment processes along the river and often found a spatial disconnect between the location of potential channel‐spanning LWD and recruitment mechanisms, which likely explains the low levels of LWD currently found in the system. This rapid method for identification of LWD sources is extendable to other basins and may prove valuable in locating future restoration projects aimed at increasing habitat quality through wood additions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Dead wood pieces, especially when organized in jams, play an important geomorphic role in streams because of the effects on flow hydraulics, pool formation and sediments storage. The increase in stream morphological diversity and complexity also exerts an important ecological role. This work reports on geomorphic role of large wood (LW) pieces and jams in a third‐order mountain stream located in the Southern Tierra del Fuego (Argentina), and draining an old‐growth Nothofagus‐forested basin not influenced by the beavers damming activity. Even if the in‐stream number of wood pieces (length >1 m; diameter >0.1 m) is comparable to that observed in other climatic areas, the slow growth of the Nothofagus forest causes a lower wood abundance in terms of volumetric load. Because of the relatively small dimensions of the surveyed LW pieces, almost 70% of them demonstrated to have been fluvial transported and also the wood jams reflect the apparent dynamic nature of wood in the channel. Wood jams exert a significant influence on the channel morphology, representing almost half of the drop caused by steps and being responsible for the creation of 30% of the pools. LW‐forced pool volume is strongly and positively correlated to the height of the LW jam. The geomorphic influence of LW jams is also exerted by a considerable sediment storing capacity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
We investigated interactions of riparian vegetative conditions upon a suite of channel morphological variables: active channel width, variability of width within a reach, large wood frequency, mesoscale habitat distributions, mesoscale habitat diversity, median particle size and per cent fines. We surveyed 49 wadeable streams, 45 with low levels of development, throughout the Upper Little Tennessee River Basin in the Southern Appalachians. Conversion of riparian forest to grass has reduced aquatic habitat area (quantified by active channel width), channel width variability, wood frequency, mesoscale habitat diversity and obstruction habitat (wood and rock jams), and such conversion has increased the fraction of run and glide habitat. Channels with grassy riparian zones were only one‐third to three‐fifths of the width of channels with forested riparian zones, and channels with grassy or narrow forested riparian zones were nearly devoid of wood. Particle size metrics were strongly affected by stream power and agricultural cover in the basin, but the data suggest that elimination of riparian forest reduces median bed particle size. Results indicate that even modest increases in the extent and width of forested riparian buffers would improve stream habitat conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Methodologies that have been developed to quantify large woody debris (LWD) have been largely tested and adapted for mountain streams of the Pacific Northwest, characterised by a very high density of LWD, composed of large pieces of wood. In French rivers, LWD studies have focused on larger systems presenting low density and discrete distributions of LWD accumulations, where existing methods could not readily be used. We thus propose an easy-to-use method to quantify LWD within such systems. After defining three representative types of LWD, the volume is obtained by representing each LWD accumulation by a simple geometric form in order to measure its height, width and length. A model is then built for the different accumulation types to estimate wood mass from the measured volume. Since the measured volume is a combination of air and wood, we quantified the proportion of air, which is, respectively, equal to 18, 90 and 93% for trunks, wood jams and shrubs. To understand variability in wood mass, we evaluated the influence of different factors on wood density (defined as the ratio between mass and volume). The main factor was found to be the water absorption capacity of the wood, whereas a lesser factor was the degree of wood decay. Most wood pieces were found to increase their mass by an average of 100% and more after only 24 h in contact with water. Moreover, the observed levels of water loss and water absorption during the first 24 h of removal or exposure to water imply major short-term variations in wood mass, which may have significant consequences for wood transport during flooding. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
The formation of large woody debris (LWD) piles has a profound impact on channel patterns and riparian succession in temperate rivers. The opportunity to study LWD along the Sabie River, a river in the semi‐arid region of Kruger National Park, South Africa, arose in February 2000 after a significant flood (c. 100‐year return interval) removed a large proportion of the fully mature riparian forest and other plant communities. Much of the uprooted vegetation was deposited as LWD piles (woody vegetation accumulations deposited on the ground > 0.1 m3) throughout the riparian and upland zones. In this article we describe the spatial distribution patterns of LWD as related to geomorphic channel type and flood frequency zone, and assess pile composition characteristics six months after the flood. Within the areas surveyed there were 68 LWD piles per hectare, the median size of LWD piles was 4.6 m3 but pile sizes (by volume) varied widely. Pool/rapid geomorphic channel types had the highest density of LWD piles (79 ha?1) and the largest piles (by volume) were in the bedrock anastomosing channels (mean = 124 m3). Piles were larger in the seasonal and ephemeral flood frequency zones (mean = 54 m3 and 55 m3) than piles in the active zone (c. 2 m3). The patterns of distribution and volume of LWD will affect the subsequent development of vegetation communities as debris piles form a mosaic of patches of surviving organisms and propagules that can strongly influence the initial trajectory of succession. The amount, distribution, and subsequent decomposition of LWD are different from that reported for temperate rivers, suggesting that the role of LWD may be different on non‐floodplain rivers such as the Sabie in semi‐arid South Africa. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Streams and their adjacent riparian zones are increasingly viewed as interdependent systems linked by reciprocal exchanges of energy, organisms, and materials. We assessed potential associations between the emerging aquatic insect flux and transitions between agricultural land and forest fragments to better understand these stream‐riparian linkages in managed landscapes. We sampled stream environmental conditions and emerging insects at 28 sites distributed along three streams flowing through agriculture‐forest‐agriculture transitions in central Ohio, USA, in the summer of 2012. Ephemeroptera and Trichoptera (ET) taxa had higher flux densities in forests (mean and 95% CI: 0.3 insects m?2 d?1 [0.1, 0.8]) compared to agriculture (mean and 95% CI: 0 insect m?2 d?1 [0, 0.1]; p = .004), and ET taxa were found in 67% of forested sites compared to only 15% of agricultural sites. In contrast, Dolichopodidae were more strongly associated with agricultural land (mean and 95% CI: 0.6 insect m?2 d?1 [0.3 to 1.2]) than forests (mean and 95% CI: 0.1 insects m?2 d?1 [0.1, 0.2]; p = .002). Although Chironomidae were the most numerically abundant, ET taxa were among the larger bodied insects and comprised >30% of the total biomass flux, illustrating the importance of taxonomic traits in mediating flux dynamics. Mechanisms driving emerging insect flux were related to substrate grain‐size distribution, channel width, and nutrient concentrations. Overall, our results demonstrate that small forest fragments are strongly related to the aquatic‐to‐terrestrial insect flux and thus have important implications for terrestrial biodiversity and food webs in agricultural landscapes.  相似文献   

16.
Stream restoration focusing on adaptable natural and inert material use has been implemented through soil bioengineering designs aimed at the stabilization of urbanized streams. Within each design application materials such as large wood, sediment fill and vegetation must be suited to diverse settings. This paper discusses the application of cribwalls as soil bioengineering designs found in two Southern Ontario watersheds and the criteria that influence their performance. Field measurements of cribwall cuttings, sediment sampling, erosion pin monitoring, and computer‐generated stream power analysis are used to compare design performance at several sites. It is determined that the technical specifications of the design and site characteristics such as stream power distribution, sediment, and channel planform are equally involved in long‐term streambank stability. The results indicate that cribwalls with dense cutting growth perform well on streambanks that offer a greater amount of soil cohesion, nutrients, and infiltration in the mid and upper sections of the bank. In streams with moderate channel slopes and stream power distribution that is above the watershed mean, streams with well‐developed floodplains, sinuous channel planforms, and low bank height ratios perform better than those that are confined, straightened, and have greater bank height ratios. Throughout the comparison of several cribwall sites, the implication of this work is to demonstrate how to assess the fitness of similar soil bioengineering designs for application to diverse stream settings and to further validate their significance in stream restoration as designs that are multifunctional. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Using geographic information system and topographic maps, 5829 headwater streams in Florida were surveyed for several parameters including elevation, stream length, flow regime and surrounding geology, and vegetation. Each was assigned to one of four headwater types: wetland, seep, lake, and spring. Wetland headwaters were the most common and widespread followed by seeps, many displaying temporary flow, while springs were perennial and least numerous. Four groups of Florida rivers were identified through cluster analysis of drainage densities (number headwaters/km of river length). Group 1 consisted of six rivers with lowest drainage densities (0.30–1.39 streams/km main channel). All were coastal rivers of peninsular Florida and, with one exception, drain to the Gulf of Mexico. Seven of eight rivers (group 2) with intermediate drainage densities (1.77–3.04 streams/km main channel) were located in peninsular Florida. Only three of 12 rivers comprising the two groups (groups 3 and 4) with greatest drainage densities (5.16–9.37 and 15.49–16.96 streams/km main channel) were not located in the Florida panhandle. Stream conservation efforts should focus on both highly complex dendritic river networks of the panhandle and on the 7000 km2 area in central Florida mostly lacking headwaters that may become a significant dispersal bottleneck for aquatic biota seeking refugia farther north from projected climate change. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Extreme storms in forested environments commonly increase inputs of coarse particulate organic matter (CPOM) and large wood (LW) to streams. Protruding boulders and bedforms, mid‐channel bars, and standing trees can trap CPOM and LW. These organic accumulations can become large enough to span the bankfull channel width, or the accumulations can be predominantly along the channel margins. We refer to both types of accumulations as transient organic jams (TOJs). TOJs can create diverse geomorphic and ecological effects in channel and floodplain environments. We use data collected from mountain streams of the Luquillo Mountains of north‐eastern Puerto Rico following September 2017 Hurricanes Irma and Maria. We examine the location, characteristics, and geomorphic effects of TOJs in channel segments representing diverse drainage areas and channel gradients. We ask three questions: (a) Does the downstream spacing of TOJs correlate with variables such as drainage area or channel gradient? (b) What variables best predict the volume of organic matter within individual TOJs or within a channel segment? And (c) is there a threshold within a river network that separates channel segments with channel‐spanning versus marginal TOJs? Datasets include multiple TOJs along each of 12 stream segments and presence/absence of channel‐spanning TOJs along an additional six streams. Data analysis with multiple linear regressions indicates that downstream spacing, average volume, and total volume per channel length of TOJs correlate significantly with bankfull channel width. Using the akaike information criterion with correction (AICc) model selection method, Strahler stream order has the most influence on the probability of TOJs being marginal or spanning.  相似文献   

19.
In this study, we modelled idealized stream reaches using empirical hydrodynamic and bioenergetic parameters to predict how rainbow trout production depends on physical and biological variations across a downstream gradient, and we compared these downstream effects in a low and high‐gradient stream reach. We found that longitudinal production potential (i.e. net rate of energetic intake per 100 m of stream length) generally increased with increasing stream size when stream gradient was low. This was not the case, however, for high‐gradient streams, wherein maximum longitudinal production potential was associated with middle or low stream size (QMAD = 2.5 to 25 m3 s?1). Areal production potential (net rate of energetic intake per m2 of wetted stream bed) reached a maximum at low stream size (QMAD = 2.5 m3 s?1) with both high and low gradients. We also showed that high stream temperature and low drift density could potentially cause adult rainbow trout to be excluded from stream reaches with high flow. The models presented here have a stronger mechanistic basis for predicting fish production across heterogeneous stream environments and provide more nuanced predictions in response to variation in environmental features than their physical habitat‐based predecessors. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Fluvial wood has long been known to enhance stream complexity by creating aquatic habitat and by increasing complexity in channel hydraulics and morphology. Although the presence and dynamics of large wood in river floodplains have been studied in a multitude of settings due to its importance in monitoring and managing ecohydrologic systems, limitations occur when studying fluvial wood on a basin scale. I postulate that with the employment of Google Earth, satellite images may be used to identify large wood and measure floodplain width across broader spatial scales previously inhibited by expensive and incomplete geospatial data. In this study, large wood was correctly identified within the floodplain of the Queets River, Washington, USA, through Google Earth; however, correct identification within the wetted channel was only possible during low flow if at least 50% was above water level. Within the study area, fluvial channel widths are measured as well. Google Earth proves to be an effective tool to discern large wood across greater spatial scales if the high‐resolution imagery is available for the study area. Results of statistical analyses derived from the downstream hydraulic geometry of the river reveal that this channel is influenced by bankfull width, the orientation of the wood to the channel, and whether it is located on a bar or within the wetted channel. In addition, wood counts analyzed in the context of the geometry of the river indicate that the fluvial wood has an influence on overall channel behavior. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号