首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The aim of the present work is to evaluate the artificial hip joint femur head that is made of Stiffness Graded (SG) material in terms of joint stresses distributions and dimensions. In this study, 3D finite element models of femur head that is made of SG material and traditional femur heads made of Stainless Steel (SS), Cobalt Chromium alloy (Co Cr Mo) and Titanium alloy (Ti) have been developed using the ANSYS Code. The effects on the total artificial hip joint system stresses due to using the proposed SG material femur head (with low stiffness at the outer surface and high stiffness at its core) have been investigated. Also, the effects on the polymeric cup contact stresses due to the use of different sizes of femur heads, presence of metal backing shell and presence of radial clearance (gap) between cup and femur head have been investigated. The finite element results showed that using SG femur head resulted in a significant reduction in the cup contact stresses even for small femur heads compared with Ti alloy, SS and Co Cr Mo femur heads. The presence of radial clearance resulted in significant increase in the cup stresses especially for small femur heads. Finally, the presence of SS metal backing shell resulted in slight increase in the hip joint stresses especially for small femur head joints. This work analyzes successfully the usage of proposed SG material as femur head in order to reduce the predicted stresses at the total hip joint replacement due to the redistribution of strain energy in the hip prostheses. Therefore, the present results suggest that minor changes in design and geometrical parameters of the hip joint have significant consequences on the long term use of the joint and should be taken into consideration during the design of the hip joint.  相似文献   

2.
A detailed study of the stresses that are developed in a glass reinforced plastic (GRP) tee joint under service loads is described. The joints are fabricated by laminating a boundary angle over a radiused fillet on either side of the ‘tee’. Full-field stress characterisation data is provided by a thermoelastic analysis of the tee joint. Calibration procedures that allow the thermoelastic data to be compared with the results of a finite element analysis are detailed. The results of the thermoelastic analysis are compared with values obtained from the finite element analysis. The applicability of thermoelastic analysis as a validation tool for finite element models of composite materials is assessed.  相似文献   

3.
4.
In this paper, a multi-particle finite element [Nguyen VT, Caron JF. A new finite element for free edge effect analysis in laminated composites. Comput Struct, accepted for publication] is applied for general laminated and is shown to be capable of simultaneously predicting global and local responses. The analysis of free-edge stresses of composite laminates subjected to mechanical and thermal loads is performed using this CoCo eight-node layer-wise finite element after a classical bending validation. Laminates with finite dimensions are considered and three-dimensional out-of-plane stresses in the interior and near the free edges are evaluated. The results obtained with this finite element modelling are compared with those available in the literature. The present calculation provides accurate stresses and can be utilised as and operational tool to predict interlaminar stresses under the loads of mechanical and thermal combined.  相似文献   

5.
The discussion about nonuniform stress distribution around interference-fit joint is particular significance in the design of composite laminates structures. In order to investigate the stress distribution of interference-fit area around composite laminates joint, an analytical model is developed for stress distribution based on the Lekhnitskii's complex potential theory. The normal and tangential stresses of contact are achieved by the relationship of deformation between pin and hole. The effects of ply orientation and interference percentage on stress components distributions of each individual layer around symmetrical laminates joint are discussed. In order to verify the validity of the analytical model, extensive 3D finite element models are established to simulate the stress components of laminates interference-fit joint. The results show that the analytical model is valid, and the laminate property and ply orientation have a significant effect on stress distribution trend while interference percentage mainly affects stress magnitude.  相似文献   

6.
This paper addresses prediction of the strength of tubular adhesive joints with composite adherends by combining thermal and mechanical analyses. A finite element analysis was used to calculate the residual thermal stresses generated by cooling down from the adhesive cure temperature, and a nonlinear analysis incorporating the nonlinear adhesive behavior was performed to accurately estimate the mechanical stresses in the adhesive. Joint failure was estimated by three failure criteria: interfacial failure, adhesive bulk failure, and adherend failure. The distributions of residual thermal stresses were investigated for various stacking angles. The effect of residual thermal stresses on joint strength was also taken into consideration. The results indicate that the residual thermal stresses, depending on the stacking angle, have a significant influence on the failure mode and strength of adhesive joints when a subsequent mechanical load is applied. Good agreement is also obtained between the predicted joint strength and the available experimental data.  相似文献   

7.
对倒装焊电子封装可靠性进行了热循环实验和有限元模拟,结果表明,有底充胶(underfill)时,SnPb焊点的热循环寿命可提高约16倍,并确定了Coffin-Manson半经验方程的参数,采用3种底充胶材料模型,亦即定常弹性模型,温度相关弹性模型和粘弹性材料模型,描述了底充胶U8347-3的力学性能。模拟结果表明,材料模型影响计算得到的SnPb焊点的塑性应范围,封装形变以及底充胶/芯片界面应力,采用弹性材料模型可能过高估计了SnPb焊点的热循环寿命和界面应力。  相似文献   

8.
钢框架梁柱端板连接的非线性有限元分析   总被引:4,自引:0,他引:4  
运用通用有限元软件ANSYS建立三维有限元模型,对8个不同形式、不同构造的钢框架梁柱端板连接进行了非线性有限元分析(FEA),并与相应的试验结果进行了全面对比分析。比较结果表明:该文的有限元模型不但能够准确地分析计算各种类型和不同构造的钢框架梁柱端板连接节点的整体受力特性,包括承载力、弯矩-转角(M-φ)曲线、极限变形状态等,还能有效地分析计算节点及其组件的细部受力特性,包括高强度螺栓的预拉力,端板和柱翼缘之间的接触状态,以及节点域、端板、螺栓、端板加劲肋、节点域加劲肋等组件的受力状态,为进一步运用该模型对各种形式和构造的端板连接进行全面的有限元参数分析计算提供了正确性依据。同时,有限元分析还给出了螺栓预拉力引起的接触面预压力分布、荷载作用下接触面的摩擦力分布以及节点的主应力流分布等对于全面和深入理解端板连接节点受力特性非常有意义但是又难于通过试验进行测量的结果。  相似文献   

9.
钛合金平板电子束焊接残余应力的小孔法测量   总被引:7,自引:0,他引:7  
采用小孔法对TC11平板真空电子束焊接接头的残余应力进行了测量,结果发现,其残余应力为以纵向残余应力为主的单向拉伸应力状态,横向残余应力数值较小,同时还将测量结果与有限元结果进行对比分析,证明了有限元模型的合理性和可靠性。  相似文献   

10.
This paper describes a testing procedure for concrete joints suitable for cored samples. Compact cylindrical geometries are employed in testing arrangements for notched fracture beams and dnotched shear specimens. Numerical idealisations of the geometries are presented which allow constitutive joint models to be calibrated without the need for a non-linear finite element program. A sequential material parameter identification procedure is presented which uses data measured directly from the tests. Relationships are derived which relate the apparent peak stresses to the elastic limit stresses in both tension and shear, the later being considered to be true material parameters. The procedures are tested for a particular numerical model and are shown to give material parameters that produce numerical results consistent with the tests from which they are derived.  相似文献   

11.
On the basis of the thermal-elastic-plastic theory, a three-dimensional finite element numerical simulation is performed on the girth welded residual stresses of the duplex stainless steel pipe with ANSYS nonlinear finite element program for the first time. Three-dimensional FEM using mobile heat source for analysis transient temperature field and welding stress field in circumferential joint of pipes is founded. Distributions of axial and hoop residual stresses of the joint are investigated. The axial and the hoop residual stresses at the weld and weld vicinity on inner surface of pipes are tensile, and they are gradually transferred into compressive with the increase of the departure from the weld. The axial residual stresses at the weld and weld vicinity on outer surface of pipes is compressive while the hoop one is tensile. The distributions of residual stresses compared positive-circle with negative-circle show distinct symmetry. These results provide theoretical knowledge for the optimization of p  相似文献   

12.
Mesomodelling of structures made of heterogeneous materials requires the introduction of mechanical models which are able to simulate the interactions between the adherents. Among these devices is quite popular the zero thickness interface (ZTI) model where the contact tractions and the displacement discontinuities are the primary static and kinematic variables. In some cases the joint response depends also on the internal stresses and strains within the thin layer adjacent to the joint interfaces. The interphase model, taking into account these additional variables, represents a sort of enhanced ZTI. In this paper a general theoretical formulation of the interphase model is reported and an original finite element, suitable for two-dimensional applications, is presented. A simple numerical experiment in plane stress state condition shows the relevant capabilities of the interphase element and allows to investigate its numerical performance. Some defects related to the shear locking of the element are resolved making use of well known numerical strategies. Finally, further numerical application to masonry structures are developed.  相似文献   

13.
It has been known for some time that distorted finite elements produce relatively (and, sometimes, dramatically) poor results. This has been related to the completeness condition. In this paper, we investigate this issue and propose that the abstract mathematical viewpoint represented by the completeness condition is actually a statement of the physical need for a finite element computation to recover accurate stresses in the metric space. This follows from the projection theorem describing finite element analysis which shows that the stresses computed by the displacement finite element procedure are abest approximation of the true stresses at an element as well as global level. The simplest possible element is used to elucidate the principles.  相似文献   

14.
The paper describes a method and main results of a refined stress-strain state evaluation for a welded joint of the hot collector to steam generator nozzle of a nuclear power plant with a WWÉR-1000 reactor, which takes into account a fuller range of the actual loading conditions in operation. In calculations, we considered the stresses induced by uncompensated thermal expansion of the reactor elements. The results of 3D finite element calculations suggest that the level of local stresses in the area of the joint exceeds the metal yield stress. The calculated stresses for the outer nozzle surface agree satisfactorily with the in-situ strain measurement data.  相似文献   

15.
The fatigue life estimation of orthotropic steel bridge decks using the finite element method is most frequently associated with the application of the structural hot spot stress approach or the effective notch stress approach, rather than the traditional nominal stress approach. The application of these approaches to a welded joint with cut-out holes in orthotropic bridge decks, where it is not easy to distinguish the non-linear stress caused by the notch at the weld toe from the stress concentration effect emanating from the hole in the detail, was investigated. The results of the finite element calculations were compared with the results of the fatigue tests which were carried out on full-scale specimens. The results of the finite element analyses revealed that the structural hot spot stresses obtained from the shell element models were unrealistically high when the welds were omitted. Moreover, the way in which the welds were represented had a substantial influence on the magnitude of the hot spot stress. The results of the analysis when using the effective notch stress approach showed that the agreement between the estimated fatigue life using this approach and the fatigue life obtained from the fatigue tests was good.  相似文献   

16.
This paper presents an analytical study of the stress distributions in pinjointed multi-fastened composite laminates. The finite element models which treat the pin and hole contact problem using a complete contact stress analysis are described. The condition of a perfect fit between the pin and hole, without lateral constraints, was applied. Membrane analysis has been utilised in conjunction with gap elements and friction for accurate modelling of the contact stresses and the stress distribution in the vicinity of the hole boundary. The accuracy of the analytical procedure, for two deformable bodies in contact, is confirmed by comparison with previous published work. The results show that the number of pins, pitch distance, number of rows, row spacing and hole pattern have a significant influence on joint performance.  相似文献   

17.
The layerwise laminate theory of Reddy1 is used to develop a layerwise, two-dimensional, displacement-based, finite element model of laminated composite plates that assumes a piecewise continuous distribution of the tranverse strains through the laminate thickness. The resulting layerwise finite element model is capable of computing interlaminar stresses and other localized effects with the same level of accuracy as a conventional 3-D finite element model. Although the total number of degrees of freedom are comparable in both models, the layerwise model maintains a 2-D-type data structure that provides several advantages over a conventional 3-D finite element model, e.g. simplified input data, ease of mesh alteration, and faster element stiffness matrix formulation. Two sample problems are provided to illustrate the accuracy of the present model in computing interlaminar stresses for laminates in bending and extension.  相似文献   

18.
This paper presents three-dimensional finite element models that investigate the performance of ceramic–composite armours when subjected to normal and oblique impacts by 7.62 AP rounds. The finite element results are compared with experimental data from different sources both for normal and oblique impact, respectively. Simulation of the penetration processes as well as the evaluation of energy and stresses distributions within the impact zones highlight the difference between normal and oblique ballistic impact phenomena. The findings show that the distributions of global kinetic, internal and total energy versus time are similar for normal and oblique impact. However, the interlaminar stresses at the ceramic–composite interface and the forces at the projectile–ceramic interface for oblique impact are found to be smaller than those for normal impact. Finally, it is observed that the projectile erosion in oblique impact is slightly greater than that in normal impact.  相似文献   

19.
The objective of this paper is to quantify how nanoscale surface stresses impact the critical buckling strains of silicon nanowires. These insights are gained by using nonlinear finite element calculations based upon a multiscale, finite deformation constitutive model that incorporates nanoscale surface stress and surface elastic effects to study the buckling behavior of silicon nanowires that have cross sectional dimensions between 10 and 25 nm under axial compressive loading. The key finding is that, in contrast to existing surface elasticity solutions, the critical buckling strains are found to show little deviation from the classical bulk Euler solution. The present results suggest that accounting for axial strain relaxation due to surface stresses may be necessary to improve the accuracy and predictive capability of analytic linear surface elastic theories.  相似文献   

20.
The local fatigue strength of a laserbeam weld of a complex engine component, which joins a PM with a formed sheet component, was assessed by the notch stress concept with the fictitious reference radius of rref = 0.05 mm. First, simplified specimens, following the main geometric dimensions of the parts, were manufactured. On these specimens the fatigue strength was identified by tests and the notch stresses calculated by finite element analysis. Based on these results a design SN‐curve was derived to assess the fatigue strength of the engine component. The numerical assessment of the welded joint was verified by proof tests with the component. The assessment could be improved by considering statistical and stress gradient dependent size effects according to the concept of the highly stressed volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号