首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural rubber (NR)/Acrylonitrile butadiene rubber (NBR) blend membranes, prepared by using dicumyl peroxide as the crosslinking agent, were tested for their vapor permeation characteristics. The permeation studies were conducted using three chlorinated hydrocarbons, viz. dichloro methane, chloroform, and carbon tetrachloride. The effects of the blend ratio, compatibilizer, penetrant size, and temperature on the vapor permeability of the membranes were investigated. The permeability of the blends was found to decrease with an increase in the NBR content, which has been attributed to the inherent solvent resistant nature of NBR. The permeation behavior of compatibilized blends was compared with those of the uncompatibilized blends. The separation efficiencies of the membranes were also tested using chloroform/acetone mixtures to complement the observations from the vapor permeation experiments.  相似文献   

2.
Poly(ethylene‐co‐vinyl acetate) (EVA)/cellulose composite membranes were prepared and their vapor permeation characteristics were studied. Two types of EVA [having vinyl acetate contents of 18% (EVA18) and of 40% (EVA40), respectively] were used for the composite fabrication. Cellulose, isolated from banana waste fibers, was used as the filler. It was observed that the EVA40 composites were more permeating than were the EVA18 composites. This observation is explained on the basis of more amorphous nature of EVA40 as compared to EVA18. The extent of vapor permeation decreased with increase in the cellulose content in the composites. The presence of voids in the polymer membranes that were designed to possess controlled behavior for the permeation was confirmed using scanning electron microscopic images to complement the observations made during the permeation studies. The influence of molecular weight, molar size, and polarity of the penetrants, on the permeation process, was also considered. The permeability of the membrane samples was calculated and the values obtained were compared with the theoretical values provided by using the modified Neilson permeability equation. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

3.
Conventionally vulcanized styrene–butadiene rubber/natural rubber blend membranes were prepared for the pervaporation separation of alkane–acetone mixtures. Swelling measurements were carried out in both acetone and n‐alkanes to investigate the swelling behavior of the membranes. The swelling behavior was found to depend on the composition of the blend. The effects of blend ratio, feed composition, and penetrant size on the pervaporation process were analyzed. The permeation properties have been explained on the basis of interaction between the membrane and solvents and blend morphology. The SBR/NR 70/30 blend membrane showed higher selectivity among all the membranes used. Flux increases with increasing alkane content in the feed composition. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3059–3068, 1999  相似文献   

4.
NR‐graft‐PHEMA latexes were synthesized by the use of graft emulsion polymerization. By increasing the HEMA monomer concentration, we found that the grafting percentage (GP) also increased. In addition, GP increased significantly at low initiator concentrations before it leveled off at moderate concentrations, and a slight decrease was observed at high initiator concentrations. NR‐g‐PHEMA latexes were prepared as pervaporation membranes for the separation of water–acetone mixtures. From the equilibrium swelling, the nonideal behavior of membrane swelling in water–acetone mixtures was found such that there appeared the maximum swelling degree at a certain concentration of liquid mixtures. Moreover, the water concentration at maximum swelling shifted to high water concentration with increasing amount of graft‐PHEMA. The sorption study suggested the preferential sorption of water on the membranes. Also, the sorption isotherms implied that there was a coupling between water and acetone molecules. Pervaporation separation of water–acetone mixtures was studied with NR‐g‐PHEMA membranes. As the feed water concentration increased, the partial water fluxes increased in contrast to the partial fluxes of acetone. From the permeation ratio, θw, the strong coupling of acetone on the water transport was observed, particularly for the membrane with high graft‐PHEMA under acetone‐rich conditions. As the feed temperature increased, the total permeation across the membranes was enhanced. The partial fluxes of water and acetone as a function of temperature followed the Arrhenius relationship by which the activation energies for permeation were estimated as 3.53 kJ/mol for water and 21.95 kJ/mol for acetone. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
The interaction of a black filler and a white filler, which are extensively used in the rubber industry, with natural rubber/poly (ethylene‐co‐vinyl acetate) (NR/EVA) blends vulcanized by DCP has been examined by equilibrium swelling technique. Blends loaded with intermediate super abrasion furnace black (ISAF) and those with silica (SiO2), of same loading, have been used. The silica incorporated blends sorbed a higher amount of aromatic solvents, compared with the ISAF filled blends, when NR was the continuous phase. However, the silica filled systems showed lower sorption characteristics when EVA became the continuous phase. This has been explained in terms of the differences in the interaction between the filler particles and the blend components. The swelling coefficient, diffusion coefficient, and molar mass between crosslinks have been computed to complement the experimental observations. POLYM. COMPOS., 28:705–712, 2007. © 2007 Society of Plastics Engineers  相似文献   

6.
The study investigates the transport process of various chlorinated hydrocarbons through natural rubber (NR), epoxidized natural rubber (ENR), and their blends. The effect of structure and morphology of the membranes on the transport parameters has been investigated. Sorption coefficient is found to increase and the permeability coefficient shows the reverse trend with increasing epoxy content. As the mol% epoxidation increases, the polymeric network structure becomes more compact, which leads to a decrease in the diffusion coefficient, which ultimately results in a low permeation coefficient. The morphology of NR/ENR blends has been investigated by combining scanning electron microscopy with permeability measurements. The permeation coefficient is found to be minimum for the NR/ENR 70/30 composition; a 50/50 composition shows the maximum. The heterogeneous morphology of 70/30 NR/ENR blend results in the low permeability coefficient, whereas the co-continuous nature of the 50/50 composition accounts for the maximum permeability. Permeability measurements provide the most useful information about the way morphology is changing with composition of the blends and about the composition corresponding to the maximum level of co-continuity of the two phases.  相似文献   

7.
Natural rubber (NR)/poly(ethylene‐co‐vinyl acetate) (EVA) blend–clay nanocomposites were prepared and characterized. The blend nanocomposites were prepared through the melt mixing of NR/EVA in a ratio of 40/60 with various amounts of organoclay with an internal mixer followed by compression molding. X‐ray diffraction patterns revealed that the nanocomposites formed were intercalated. The formation of the intercalated nanocomposites was also indicated by transmission electron microscopy. Scanning electron microscopy, used to study the fractured surface morphology, showed that the distribution of the organoclay in the polymer matrix was homogeneous. The tensile modulus of the nanocomposites increased with an increase in the organoclay content. However, an increase in the organoclay content up to 5 phr did not affect the tensile strength, but the organoclay reduced this property when it was increased further. This study also indicated that a low silicate content dispersed in the blend matrix was capable of increasing the storage modulus of the material. The addition of the organoclay also increased the decomposition temperature of the NR/EVA blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 353–362, 2006  相似文献   

8.
The sorption of n-alkanes, viz. hexane, heptane and octane by cross-linked natural rubber/poly(ethylene-co-vinyl acetate) (NR/EVA) blends has been studied at 28, 38, 48 and 58°C, with special reference to the effects of EVA content, cross-linking systems, penetrant nature and temperature. The solvent transport was found to decrease with increase in EVA content in the blends. The effects of blend ratio on the transport characteristics have been correlated with the phase morphology of the blends, using scanning electron micrographs and optical micrographs. Among the three vulcanising systems, viz. sulphur (S), dicumyl peroxide (DCP) and a mixed system (S + DCP) employed for the matrix, the DCP cross-linked blends exhibited the lowest solvent uptake. Octane has been found to show higher interaction with the blends than hexane and heptane, probably owing to the closer solubility parameter values. The computed transport coefficients, viz. diffusion coefficient and permeability coefficient, were found to decrease with increase in EVA content in the blends. At room temperature, the mechanism of diffusion was found to deviate slightly from the regular Fickian trend for all blend systems. The blend–solvent interaction parameter and the activation energy for transport were also determined from the sorption data.  相似文献   

9.
Ethylene vinyl acetate (EVA) has been used as a compatibilizer for (natural rubber)/(recycled acrylonitrile‐butadiene rubber) (NR/NBRr) blends, vulcanized by sulfur. EVA offers excellent heat, ozone, and weather resistance, whereas the vinyl acetate groups provide oil resistance to the blend. It exhibits good tear resistance and may be crosslinked. However, EVA exhibits poor low‐temperature flexibility. NBR gloves have excellent resistance to punctures, tears, and many types of chemicals, while NR has good physical and mechanical properties. NR/NBRr blends were prepared with various compositions with the EVA content fixed. Tensile properties, hardness, and swelling behavior tests were performed to determine the compatibility of NR/NBRr blends in the presence of EVA. Results indicated that incorporation of EVA into NR/NBRr blends improved tensile strength, modulus, and elongation at break compared with NR/NBRr blends without EVA. The improvement in hardness and reduction in resilience on compatibilization are due to an increase in crosslink density, which gives NR/NBRr blends better swelling resistance. Scanning electron microscopy of the fracture surfaces indicates that, with the addition of EVA in NR/NBRr blends, better adhesion between NR and NBRr was obtained, thus improving the compatibility of NR/NBRr blends. J. VINYL ADDIT. TECHNOL., 23:135–141, 2017. © 2015 Society of Plastics Engineers  相似文献   

10.
In this article, a series of diblock copolymer polyethylene‐b‐ poly(ethylene glycol)s (PE‐b‐PEGs) with various molecular weight of polyethylene segment was blended with linear low‐density PE. The PE/PE‐b‐PEG blend porous membranes with high porosity were obtained by thermally induced phase separation (TIPS) process. The isothermal crystallization kinetics of PE/LP/PE‐b‐PEG blends indicated that the introduction of PE‐b‐PEG could inhibit the growth rate of polyethylene crystals which could increase the pore size and porosity of the membranes. The PE/PE‐b‐PEG blend membranes with PE1300‐b‐PEG2200 showed the largest pore size and porosity due to its crystallization behavior during TIPS. The surface of the membranes became smoother and the morphology of the membranes could be effectively tuned by introducing PE‐b‐PEG. Compared with the PE membrane, the PE/PE‐b‐PEG blend membranes exhibited higher hydrophilicity (the water contact angle decreased from 112° to 84°), water permeability (the permeation flux increased from 80 to 440 L/m2 h under 0.1 MPa), rejection performance (completely reject carbon particles in the filtration of carbon ink solution), and fouling resistance (the value of protein adsorption dropped from 0.25 to 0.05 mg/cm2). The hydrophilicity and fouling resistance of PE/PE‐b‐PEG blend membranes increased as the length of PE segment in PE‐b‐PEGs decreased. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46499.  相似文献   

11.
Transparent nonporous membranes were prepared by blending natural rubber (NR) with epoxidized NR (ENR). These blend membranes were evaluated for the selective separation of chlorinated hydrocarbons from acetone. The flux and selectivity of the membranes were determined both as a function of the blend composition and feed mixture composition. Results showed that polymer blending method could be very useful to develop new membranes with improved permselectivity. Pervaporation properties could be optimized by adjusting the blend composition. NR/ENR 70/30 and NR/ENR 30/70 composition showed a decrease in flux and selectivity, whereas the 50/50 composition showed increased flux and increased selectivity. Chlorinated hydrocarbons permeated preferentially through all the tested membranes. The feed mixture composition also strongly influenced the pervaporation characteristics of the blend membranes. Permselectivity was found to depend on the molecular size of the penetrants. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2365–2379, 1999  相似文献   

12.
The biopolymer poly‐3‐hydroxybutyrate‐co‐3‐hydroxyvalerate (PHBV) is a promising material for packaging applications but its high brittleness is challenging. To address this issue, PHBV was blended with nine different biopolymers and polymers in order to improve the processing and mechanical properties of the films. Those biopolymers were TPS, PBAT, a blend of PBAT + PLA, a blend of PBAT + PLA + filler, PCL and PBS, and the polymers TPU, PVAc, and EVA. The extruded cast films were analyzed in detail (melting temperature, crystallinity, mechanical properties, permeation properties, and surface topography). A decrease in crystallinity and Young's modulus and an increase in elongation at break and permeability were observed with increasing biopolymer/polymer concentration. In PHBV‐rich blends (≥70 wt % PHBV), the biopolymers/polymers PCL, PBAT, and TPU increased the elongation at break while only slightly increasing the permeability. Larger increases in the permeability were found for the films with PBS, PVAc, and EVA. The films of biopolymer/polymer‐rich blends (with PBAT, TPU, and EVA) had significantly different properties than pure PHBV. A strong effect on the properties was measured assuming that at certain biopolymer/polymer concentrations the coherent PHBV network is disrupted. The interpretation of the permeation values by the Maxwell–Garnett theory confirms the assumption of a phase separation. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46153.  相似文献   

13.
A series of blend membranes of poly(phenyl sulfone) (PPSU) with poly(bisphenol A‐co‐4‐nitrophthalic anhydride‐co‐1,3‐phenylenediamine) (PBNPI) were prepared through a solution casting method. This was done to examine the permeation characteristics of oxygen and nitrogen. The effect of the PPSU/PBNPI ratio on the membrane structure and O2/N2 separation performance were investigated. The results show that the permeability increased remarkably with the content of PPSU, whereas the selectivity decreased slightly. To enhance the selectivity of O2/N2, the blend membranes were further crosslinked with a p‐xylylenediamine agent via the immersion method. According to the Fourier transform infrared analysis, the N? H group was formed on the imide group of PBNPI. Therefore, we suggest that during the crosslinking modification, the PBNPI served as a crosslinkable polymer; this resulted in increased crosslinking efficiency with PBNPI content. The high‐resolution X‐ray diffraction and melting point method results show that crosslinking modification improved the selectivity with an acceptable loss in permeability along with increased crystallinity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Poly(ethylene‐co‐vinyl acetate) (EVA)‐based nanocomposites were prepared by melt mixing in an internal mixer with nanocalcium phosphate in different weight percentages. The nanocalcium phosphate with 10‐nm size was prepared by the polymer‐induced crystallization technique. The mechanical properties as well as the gas permeability tests were performed to analyze the effect of nanofiller incorporation in to the polymer. Molecular transport of different solvents such as water, benzene, and n‐heptane was undertaken at room temperature for EVA nanocomposites with 0, 3, and 5% filler loading. Among the three, water showed less uptake and benzene showed maximum uptake. Transport parameters such as diffusion coefficient, sorption coefficient, and permeation coefficient were calculated, and all of them showed a decrease with respect to the filler loading. First‐order kinetics model was applied to investigate the transport kinetics. Also, the sorption curves were compared to theoretical predictions and found to be in good agreement except for water. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
In this article, maleated–grafted ethylene‐co‐vinyl acetate (EVA‐g‐MA) was used as the interfacial modifier for polypropylene/polyamide‐6 (PP/PA6) blends, and effects of its concentration on the mechanical properties and the morphology of blends were investigated. It was found that the addition of EVA‐g‐MA improved the compatibility between PP and PA6 and resulted in a finer dispersion of dispersed PA6 phase. In comparison with uncompatibilized PP/PA6 blend, a significant reduction in the size of dispersed PA6 domain was observed. Toluene‐etched micrographs confirmed the formation of interfacial copolymers. Mechanical measurement revealed that the addition of EVA‐g‐MA markedly improved the impact toughness of PP/PA6 blend. Fractograph micrographs revealed that matrix shear yielding began to occur when EVA‐g‐MA concentration was increased upto 18 wt %. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99:3300–3307, 2006  相似文献   

16.
In this study an attempt was made to improve the rebound resilience and to decrease the density of ethylene‐vinyl acetate copolymer (EVA) foam. For this purpose, EVA was blended with natural rubber (NR), and EVA/NR blends were foamed at 155°C, 160°C, and 165°C. To investigate the correlation between crosslinking behavior and physical properties of foams, crosslinking behavior of EVA/NR blends was monitored. The physical properties of the foams were then measured as a function of foaming temperatures and blend compositions: 165°C was found to be the optimal temperature for a crosslinking of EVA/NR foam. As a result, the density of EVA/NR blend foamed at 165°C was found to be the lowest. EVA/NR (90/10) blend, foamed at 165°C, showed lower density, better rebound resilience, and greater tear strength than EVA foam. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2212–2216, 2004  相似文献   

17.
Proton exchange membranes (PEMs) based on blends of poly(ether sulfone) (PES) and sulfonated poly(vinylidene fluoride‐co‐hexafluoropropylene) (sPVdF‐co‐HFP) were prepared successfully. Fabricated blend membranes showed favorable PEM characteristics such as reduced methanol permeability, high selectivity, and improved mechanical integrity. Additionally, these membranes afford comparable proton conductivity, good oxidative stability, moderate ion exchange capacity, and reasonable water uptake. To appraise PEM performance, blend membranes were characterized using techniques such as Fourier transform infrared spectroscopy, AC impedance spectroscopy; atomic force microscopy, and thermogravimetry. Addition of hydrophobic PES confines the swelling of the PEM and increases the ultimate tensile strength of the membrane. Proton conductivities of the blend membranes are about 10?3 S cm?1. Methanol permeability of 1.22 × 10?7cm2 s?1 exhibited by the sPVdF‐co‐HFP/PES10 blend membrane is much lower than that of Nafion‐117. AFM studies divulged that the sPVdF‐co‐HFP/PES blend membranes have nodule like structure, which confirms the presence of hydrophilic domain. The observed results demonstrated that the sPVdF‐co‐HFP/PES blend membranes have promise for possible usage as a PEM in direct methanol fuel cells. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43907.  相似文献   

18.
To elucidate the water transport mechanism through homogeneous membranes, water and water vapor permeation through crosslinked cellulose membranes, cellulose diacetate, and cellulose triacetate membranes are studied. It is found that the water flux increases with the degree of hydration; and as for cellulose membranes, the degree of hydration is an increasing function of the degree of crosslinking. Activation energy of hydraulic permeability (Kw) is not equal to that of purely viscous flow, and is smaller than that of the water vapor diffusion coefficient (D?) for all membranes. The free-volume concept relating the molar frictional coefficient to temperature and to degree of hydration explains reasonably the temperature dependence of hydraulic permeability and of water vapor diffusion coefficient and gives adequate values for the fractional free volume of the system. The critical volume V*, appearing in the Cohen-Turnbull expression between friction coefficient and free volume fraction, may be considered as the size of the cluster of water molecules. The value of V* in the case of hydraulic permeability is larger than that for water vapor diffusion by several times. Furthermore, the value V* increases with increase of degree of hydration for water permeation and water vapor diffusion.  相似文献   

19.
In this study we reported synergic activity of a novel secondary accelerator N‐Benzylimine aminothioformamide (BIAT) along with tetramethylthiuram disulfide (TMTD) in improving cure and mechanical properties of gum and filled mixes of Styrene‐Butadiene Rubber (SBR). The feasibility of application of BIAT in sulfur vulcanization of an ideal blend of SBR and natural rubber (NR) has also been investigated. The mechanical properties like t ensile strength, tear resistance, hardness, compression set, and abrasion loss were measured. Swelling values were also determined as a measure of crosslink densities of the vulcanizates. The binary accelerator system BIAT‐TMTD was found very effective in improving cure properties of the mixes of pure SBR and a 50/50 blend of SBR and NR.There was also found simultaneous improvement in mechanical properties of vulcanizates of both pure and blend. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Enhancement of the hydrophilicity in polymeric membrane materials results in membranes with higher flux and better membrane characteristics. Hence, polysulfone was carboxylated and ultrafiltration membranes were prepared from blends of cellulose acetate and carboxylated polysulfones having various degrees of carboxylation with a total polymer concentration of 20 wt % in casting solution and at different blend polymer compositions. The effects of degree of carboxylation on membrane characteristics such as compaction, pure water flux, and membrane hydraulic resistance (Rm) have been investigated. The influence of the polymer concentration in the blend solution on the performance of blend membranes at various blend polymer compositions has also been investigated and compared with that of blend membranes prepared from blends of cellulose acetate and polysulfone or carboxylated polysulfone with a total polymer concentration of 17.5 wt %. Further, the solute rejection performance of the membranes has also been investigated by subjecting the membranes to metal ion permeation studies using polyelectrolyte‐enhanced ultrafiltration. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 976–988, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号