首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the effects of the elastomer type—ethylene–propylene–diene monomer (EPDM), three kinds of ethylene vinyl acetate (EVA 9, EVA 18, and EVA 28, where the number is the vinyl acetate concentration), and styrene–butadiene–styrene—and content on the microstructure and mechanical and thermal properties of isotactic polypropylene (i‐PP) blends were investigated. Five different elastomer concentrations (3, 6, 9, 12, and 15 wt %) were added to i‐PP to produce polypropylene/elastomer blends. The yield and tensile strengths, elastic modulus, impact strength, hardness, melt flow index (MFI), and structural properties of the blends were investigated. The tensile and yield strengths, elastic modulus, and hardness decreased gradually, whereas the impact strength and MFI increased as the elastomer content increased. As a result, with respect to the impact strength, the most effective elastomers were EPDM with 15 wt % and EVA 28 with 15 wt % for higher impact strength values. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1445–1450, 2005  相似文献   

2.
This study aims to investigate the mechanical and physical properties of polypropylene (PP) filled by natural zeolite. For this purpose, a natural zeolite (at 1–6 wt% filler loadings) with two different particle sizes was used. Two different kinds of silane coupling agents (3‐aminopropyltriethoxysilane, GAPTES and 3‐glycidoxypropyltrimethoxysilane, GPTMS) at three different volume ratios were used to improve the zeolite compatibility with PP and to improve the mechanical properties of composites. Fillers and PP were compounded with a twin screw extruder, and the composites were moulded with injection moulding press. The samples were subjected to mechanical tests (i.e., impact and tensile tests) and physical tests (i.e., hardness, density, and melt flow index, MFI). The physical test results showed that the levels of hardness and density of both unmodified and modified zeolite‐filled PP composites were higher compared with neat PP. The MFI values of composites were decreased by increasing zeolite loading level. Composites including GAPTES modified zeolite showed improved yield strength, impact strength and stiffness compared with composites filled with unmodified zeolite particles. POLYM. COMPOS. 34:1396–1403, 2013. © 2013 Society of Plastics Engineers  相似文献   

3.
The recycled polystyrene (rPS) was toughened with ethylene‐octylene copolymer thermoplastic elastomer (POE) and high‐density polyethylene (HDPE) with various melt flow index (MFI), compatibilized by styrene‐butadiene‐styrene copolymer (SBS) to enhance the toughness of rPS for use as TV backset. The rPS/POE binary blends exhibited an increased impact strength with 5–10 wt % POE content followed by a decrease with the POE content up to 20 wt %, which could be due to poor compatibility between POE and rPS. For rPS/POE/SBS ternary blends with 20 wt % of POE content, the impact strength increased dramatically and a sharp brittle‐ductile transition was observed as the SBS content was around 3–5 wt %. Rheological study indicated a possible formation of network structure by adding of SBS, which could be a new mechanism for rPS toughening. In rPS/POE/HDPE/SBS (70/20/5/5) quaternary blends, a fibril‐like structure was observed as the molecular weight of HDPE was higher (with lower MFI). The presence of HDPE fibers in the blends could not enhance the network structure, but could stop the crack propagation during fracture process, resulting in a further increase of the toughness. The prepared quaternary blend showed an impact strength of 9.3 kJ/m2 and a tensile strength of 25 MPa, which can be well used for TV backset to substitute HIPS because this system is economical and environmental friendly. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
In this study, applying electron beam irradiation method at a relatively low-irradiation dose (20 kGy) under the air atmosphere to prepare injectable polypropylene (PP)/ethylene-octene copolymer (EOC) blends with fine morphology and appropriate performance was investigated. For this purpose, an extrusion PP grade with an EOC grade suitable to improve its impact resistance was melting blended. Gel content and rheological measurements revealed long-chain branching is predominant phenomenon occurring during the irradiation process of EOC. Blend irradiation resulted in changing its melt flow index proper for injection molding. A fine morphology obtained for the unirradiated blend was preserved for the irradiated blend. Moreover, irradiation thermally stabilized the blend morphology. Blends linear viscoelastic behavior discussed by proper rheological models revealed the existence of interfacial interactions and a reduction of the interfacial tension between irradiated blend phases. No significant effect of irradiation on the crystallization characteristics of EOC and the blend was observed. The satisfying impact resistance of the irradiated blend was near to that of the unirradiated blend, although its tensile mechanical properties were less.  相似文献   

5.
A waterborne epoxy‐acrylate composite latex was synthesized. The effects of the concentration of the initiator, surfactant, and epoxy resin on the particle size, molecular weight, and grafting ratios of the composite latex were investigated. The increase of the concentration of the initiator and epoxy resin led to the decrease of the weight‐average molecular weight. The graft ratios increased with an increase in the initiator level and a decrease in the epoxy resin concentration whereas the variation of the concentration of the surfactant did not have much influence on the graft ratios. The increase in the initiator level caused the aggrandizement of the particle size, and the increase of the concentration of the surfactant and epoxy resin caused a decrease in the latex particle size. Fourier transform IR spectroscopy with attenuated total reflectance indicated that the epoxy resin molecules were enriched in the mold‐facing surface in the film from the composite latex. The differential scanning calorimetry analysis, dynamic mechanical analysis, and Instron test showed that the polymer films cast by the composite latex had lower tensile strength and glass transition than those by the blend latex. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1736–1743, 2002  相似文献   

6.
Isotactic polypropylene has been reactively blended with an ethylene‐octene copolymer so as to improve mechanical and rheological properties. Free radical polymerization of styrene and a multifunctional acrylate during melt extrusion has resulted in the formation of unique features in both amorphous and crystalline phases. Transmission electron microscopy images show that the elastomer domains are less than 200 nm in diameter, whereas grafting leads to the appearance of clusters of polymeric particles, ranging in size from several nanometers up to 200 nm. Differential scanning calorimetry (DSC) shows that grafting creates lamellar crystals that melt at much lower temperatures and recrystallize at much higher temperatures than binary blends. From wide angle X‐ray diffraction and DSC, grafting has been shown to limit the maximum crystal size and perfection, as well as broaden the size distribution of the crystals. Grafting causes significant changes in the α crystalline phase of polypropylene and promotes the formation of the β phase. Scanning electron microscopy reveals a unique cross‐hatch structure of small crystals in the reactive blend, with tangential and radial lamellae appearing as crosslinked material of about the same aspect ratio. Polarized light microscopy gives evidence that grafting and branching within this blend causes a gelation‐like recrystallization. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

7.
Polypropylene/Ethylene–Octene copolymer (PP/EOC) blends were prepared by melt blending technique followed by compression molding. The effect of addition of EOC on the mechanical behavior of the PP matrix was investigated. Tensile and flexural strengths decreased with the incorporation of EOC. However, the impact strength of the matrix polymer increased in all the blend systems. The blends prepared at 30% EOC content showed an increase in the impact strength to the tune of 380% as compared with polypropylene (PP) matrix. The morphology of the fractured surfaces was investigated employing Scanning Electron Microscopy. SEM micrographs depicted the formation of biphase structure, wherein the EOC phases were homogeneously dispersed as small droplets within the PP matrix. WAXD patterns revealed that the α monoclinic form of isotactic PP does not show any significant change with the incorporation of EOC up to 70 wt %. DSC thermograms revealed a decrease in the melting temperature of the virgin matrix with the addition of EOC. The blend system at 50% EOC exhibited a broad crystallization exotherm at 75°C thus indicating multiple crystallization behavior primarily attributed to the difference in the nucleation process. Further DMA analysis showed presence of two different relaxation peaks corresponding to the Tg of EOC and PP matrix respectively, confirming the formation of a biphase structure. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
The aim of this study was to improve the toughness of recycled poly(ethylene terephthalate) (PET)/glass fiber (GF) blends through the addition of ethylene–butyl acrylate–glycidyl methacrylate copolymer (EBAGMA) and maleic anhydride grafted polyethylene–octene (POE‐g‐MAH) individually. The morphology and mechanical properties of the ternary blend were also examined in this study. EBAGMA was more effective in toughening recycled PET/GF blends than POE‐g‐MAH; this resulted from its better compatibility with PET and stronger fiber/matrix bonding, as indicated by scanning electron microscopy images. The PET/GF/EBAGMA ternary blend had improved impact strength and well‐balanced mechanical properties at a loading of 8 wt % EBAGMA. The addition of POE‐g‐MAH weakened the fiber/matrix bonding due to more POE‐g‐MAH coated on the GF, which led to weakened impact strength, tensile strength, and flexural modulus. According to dynamic rheometer testing, the use of both EBAGMA and POE‐g‐MAH remarkably increased the melt storage modulus and dynamic viscosity. Differential scanning calorimetry analysis showed that the addition of EBAGMA lowered the crystallization rate of the PET/GF blend, whereas POE‐g‐MAH increased it. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
The toughness of a polypropylene (PP)/ethylene‐octene copolymer (EOC)/maleic anhydride‐grafted poly(ethylene‐co‐octene) (EOC‐g‐MA)/clay nanocomposite and blends of PP/EOC and PP/EOC/EOC‐g‐MA was investigated using Charpy impact and single‐edge‐notch tensile (SENT) tests. In order to understand the toughening mechanisms, impact fracture surfaces and damage zones of single‐edge‐notch samples were studied with scanning electron microscopy and transmission optical microscopy, respectively. It was observed that the addition of EOC‐g‐MA to PP/EOC blend led to improvements in both impact strength and fracture energy of SENT tests because of the enhanced compatibility of the blend, which resulted from reduced EOC particle size and improved interfacial adhesion, and the decreased crystallinity of PP. The incorporation of clay to PP/EOC/EOC‐g‐MA blend caused a further increase of the toughness, owing to the greater decrease in the size of elastomer particles, to the presence of clay tactoids inside the elastomer phase and presumably to debonding of clay layers during the low‐speed SENT tests. The results of microscopic observations showed that the main toughening mechanism in PP/EOC/EOC‐g‐MA blend and PP/EOC/EOC‐g‐MA/clay nanocomposite is crazing. Copyright © 2012 Society of Chemical Industry  相似文献   

10.
Isotactic polypropylene blends with 0–20 vol % thermoplastic elastomers were prepared to study the influence of elastomer particle size on mechanical properties. Polystyrene-block-poly(ethene-co-but-1-ene)-block-polystyrene (SEBS) was used as thermoplastic elastomer. SEBS particle size, determined by means of transmission electron and atomic force microscopy, was varied by using polypropylene and SEBS of different molecular weight. With increasing polypropylene molecular weight and, consequently, melt viscosity and decreasing SEBS molecular weight, SEBS particle size decreases. Impact strength of pure polypropylene is almost independent of molecular weight, whereas impact strength of polypropylene blends increases strongly with increasing polypropylene molecular weight. The observed sharp brittle–tough transition is caused by micromechanical processes, mostly shear yielding, especially occurring below a critical interparticle distance. The interparticle distance is decreasing with decreasing SEBS particle size and increasing volume fraction. If the polypropylene matrix ligament between the SEBS particles is thinner than 0.27 μm, the blends become ductile. Stiffness and yield stress of polypropylene and polypropylene blends increase with increasing polypropylene molecular weight in the same extent, and are consequently only dependent on matrix properties and not on SEBS particle size. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1891–1901, 1998  相似文献   

11.
Rajkiran R. Tiwari 《Polymer》2011,52(24):5595-5605
Room temperature Izod impact strength was determined for polypropylene (PP)/ethylene-co-octene elastomer (EOR) blends and nanocomposites, containing organoclays based on montmorillonite (MMT), at fixed elastomer content of 30 wt% and 0-7 wt% MMT. A ratio of maleated polypropylene, PP-g-MA to organoclay of unity was used as a compatibilizer in the nanocomposites. The organoclay serves to reduce the size of the EOR dispersed phase particles and facilitates toughening. The Izod impact strength is also influenced by the molecular weight of PP, elastomer octene content, elastomer MFI in addition to MMT content. Nanocomposites based on a low molecular weight polypropylene (L-PP) containing a higher octene content elastomer showed higher impact strength at lower MMT contents compared to those based on a low octene content elastomer. The effect of elastomer octene content on impact strength of high molecular weight polypropylene (H-PP) nanocomposites is not so significant. Elastomers having a melt flow index (MFI) in the range of 0.5-1.0 showed significant improvement in the impact strength of L-PP based nanocomposites. Most H-PP/EOR blends gave ‘super-tough’ materials without MMT and maintain this toughness in the presence of MMT. The critical elastomer particle size below which the toughness is observed is reduced by decreasing the octene content of the elastomer. For the similar elastomer particle sizes in nanocomposites, the impact strength varies as H-PP > M-PP > L-PP. The tensile modulus and yield strength improved with increasing MMT content; however, elongation at break was reduced. The extruder-made TPO showed a good-balance of properties in the presence of MMT compared to reactor-made TPO having similar modulus and elastomer content.  相似文献   

12.
Polyethylene terephthalate (PET) and polypropylene (PP) are incompatible thermoplastics because of differences in chemical structure and polarity, hence their blends possess inferior mechanical and thermal properties. Compatibilization with a suitable block/graft copolymer is one way to improve the mechanical and thermal properties of the PET/PP blend. In this study, the toughness, dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA) of PET/PP blends were investigated as a function of different content of styrene‐ethylene‐butylene‐styrene‐g‐maleic anhydride (SEBS‐g‐MAH) compatibilizer. PET, PP, and SEBS‐g‐MAH were melt‐blended in a single step using the counter rotating twin screw extruder with compatibilizer concentrations of 0, 5, 10, and 15 phr, respectively. The impact strength of compatibilized blend with 10 phr SEBS‐g‐MAH increased by 300% compared to the uncompatibilized blend. Scanning electron microscope (SEM) micrographs show that the addition of 10 phr SEBS‐g‐MAH compatibilizer into the PET/PP blends decreased the particle size of the dispersed PP phase to the minimum level. The improvement of the storage modulus and the decrease in the glass transition temperature of the PET phase indicated an interaction among the blend components. Thermal stability of the PET/PP blends was significantly improved because of the addition of SEBS‐g‐MAH. J. VINYL ADDIT. TECHNOL., 23:45–54, 2017. © 2015 Society of Plastics Engineers  相似文献   

13.
Blends of polypropylene/ethylene octene comonomer (PP/EOC) with conducting fillers viz., carbon black (CB) and multiwall carbon nanotubes (MWNT) were prepared using melt mixing technique with varying filler concentration and blend compositions. Thermo gravimetric analysis studies indicated that presence of filler enhanced the thermal stability of PP/EOC blends. Morphological analysis revealed the formation of matrix‐dispersed droplet and co‐continuous type of morphology depending on the blend compositions. Significant reduction in droplet size and finer ligament thickness in co‐continuous structure were observed in the blends with filler due to compatibilization action. Fillers were found to be aggregated in the EOC phase irrespective of blends compositions and could be related to the affinity of the fillers toward EOC phase. The electrical conductivity of PP/EOC blends with CB and MWNT was found to be highest for 80/20 composition and decreased as EOC content increased. The percolation threshold of CB was between 10 and 15 wt% for the 80/20 and 70/30 blends whereas it was 15–20 wt% for blends with EOC content higher than 30 wt%. The percolation threshold was 2–3 wt% MWNT for PP/EOC blends. This was attributed to the aggregated filler network preferentially in the EOC phase. The melt‐rheological behavior of PP/EOC blends was significantly influenced in presence of both the fillers. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

14.
Abstract

Blends of ethylene propylene diene terpolymer (EPDM) rubber with thermoplastic polyolefins such as low‐density polyethylene (LDPE), high‐density polyethylene (HDPE), high molecular weight polypropylene (PP), and polypropylene random copolymer grade (PP‐R) were prepared by melt mixing. The physico‐mechanical properties, equilibrium swelling in benzene, and aging properties of the binary blends were investigated, analyzing the effect of the rubber/thermoplastics ratio and the type of the thermoplastic material on these properties. The data obtained indicate that EPDM/PP‐R blend in 20/80 w/w% shows the highest physico‐mechanical properties with improved retained tensile strength at 90°C for 7 days. This blend ratio also gives excellent retained equilibrium swelling in benzene at room temperature for 7 days, although EPDM/LDPE blend in 80/20 w/w% imparts the highest retained elongation at break at 90°C for 7 days.  相似文献   

15.
This works systematically investigates the interfacial properties of the binary and the ternary blends based on polystyrene (PS), ethylene octene copolymer (EOC), and styrene–ethylene–butylene–styrene (SEBS) by analyzing the melt linear rheological behavior of the blends and neat components. Moreover, the relationship between rheology, phase morphology, and mechanical properties of PS/EOC ternary blends with various quantities of SEBS were studied. The surface shear modulus (β) and interfacial tension values obtained by Palierne model indicated that the EOC/SEBS blend has the best interfacial properties, while the lowest interaction was found for PS/EOC blend. Based on the Palierne model and Harkin's spreading coefficients a core–shell type morphology with EOC phase encapsulated by the SEBS shell dispersed in the PS matrix was determined for the ternary blends. Scanning electron microscopy results revealed that both fibrillar and droplet forms of dispersed phase could be developed during the blending of PS and EOC in presence of SEBS. The extent of fibrillar morphology and interfacial interactions in PS/EOC/SEBS ternary blends was dependent on the SEBS content. The improvement of the mechanical properties of PS/EOC blends in the presence of SEBS was evidenced by the tensile and impact resistance experiments. The tensile strength reinforcement was more pronounced for the ternary blends with more fibrillar dispersed phase. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48791.  相似文献   

16.
The dynamic rheological and mechanical properties of the binary blends of two conventional high‐density polyethylenes [HDPEs; low molecular weight (LMW) and high molecular weight (HMW)] with distinct different weight‐average molecular weights were studied. The rheological results show that the rheological behavior of the blends departed from classical linear viscoelastic theory because of the polydispersity of the HDPEs that we used. Plots of the logarithm of the zero shear viscosity fitted by the Cross model versus the blend composition, Cole–Cole plots, Han curves, and master curves of the storage and loss moduli indicated the LMW/HMW blends of different compositions were miscible in the melt state. The tensile yield strength of the blends generally followed the linear additivity rule, whereas the elongation at break and impact strength were lower than those predicted by linear additivity; this suggested the incompatibility of the blends in solid state. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
The graft copolymerization of maleic anhydride (MAH) onto acrylonitrile‐butadiene‐styrene terpolymer (ABS) using dicumyl peroxide and benzoyl peroxide as the binary initiator and styrene as the comonomer in the molten state was described. The properties and phase morphologies of the modified products (ABS‐g‐MAH) were studied. The results indicate that the melt flow index (MFI) of ABS‐g‐MAH increases with the increase of MAH content, the initiator concentration, and the screw speed, whereas the MFI decreases with the increase of temperature. The impact strength and the percentage elongation of ABS‐g‐MAH both decreased and the tensile strength of ABS‐g‐MAH increased slightly as the grafting degree increased. The phase inversion behavior of the modified product was observed by transmission electron microscopy. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2834–2839, 2004  相似文献   

18.
Compatibilization is necessary for most binary blends which display poor mechanical properties. The addition of an ethylene–propylene block copolymer to a blend of isotactic polypropylene and linear low-density polyethylene alleviates the problem of poor adhesion at the interface. This was observed through the improvement in overall performance of the blend. It was noted that it is not solely the “interfacial agent” which is responsible for the improvement in impact strength of this blend. © 1992 John Wiley & Sons, Inc.  相似文献   

19.
In the present study, the effect of talc content on the mechanical, thermal, and microstructural properties of the isotactic polypropylene (i‐PP) and elastomeric ethylene/propylene/diene terpolymer (EPDM) blends were investigated. In the experimental study, five different talc concentrations, 3, 6, 9, 12, and 15 wt %, were added to i‐PP/EPDM (88/12) blends to produce ternary composites. The mechanical properties such as yield and tensile strengths, elongation at break, elasticity modulus, izod impact strength for notch tip radius of 1 mm, and hardness with and without heat treatments and thermal properties, such as melt flow index (MFI), of the ternary composites have been investigated. The annealing heat treatment was carried out at 100°C for holding time of 75 h. From the tensile test results, an increased trend for the yield and tensile strengths and elasticity modulus was seen for lower talc contents, while elongation at break showed a sharp decrease with the addition of talc. In the case of MFI, talc addition decreased the MFI of i‐PP/EPDM blends. It was concluded that, taking into consideration, mechanical properties and annealing heat treatment, heat treatment has much more effect on higher yield and tensile strengths, elongation at break, elasticity modulus, impact strength, and hardness. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3033–3039, 2006  相似文献   

20.
A novel polymerization procedure, the concentrated‐emulsion graft polymerization of styrene monomer with poly(butyl acrylate) seed, was proposed for the production of a self‐compatibility macromolecule alloy. The effects of the butyl acrylate content, sodium dodecyl sulfate concentration, and polymerization temperature on the graft ratio were investigated. Scanning electron microscopy, transmission electron microscopy, and impact strength were used to characterize the microstructure and mechanical performance of the self‐compatibility macromolecule alloy. The results showed that increasing the butyl acrylate content, reducing the sodium dodecyl sulfate concentration, and improving the polymerization temperature all favored an increased graft ratio, which resulted in increased impact strength of the self‐compatibility macromolecule alloy. Therefore, the concentrated‐emulsion polymerization method is particularly suitable for seed‐graft polymerization. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2915–2920, 2002; DOI 10.1002/app.10288  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号