首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As‐spun poly(trimethylene terephthalate) (PTT)/poly(ethylene terephthalate) (PET) side‐by‐side conjugate fibers were drawn to investigate the effects of drawing conditions on structure development and physical properties. Effects of draw ratio and heat‐set temperature were observed. In the state of an as‐spun fiber, the molecular orientation of PTT was higher than PET, whereas PET molecular orientation increased remarkably over PTT with increasing draw ratio. Crimp contraction increased sharply at a draw ratio over 2.0, where the crystalline structure of the PET developed sufficiently. A heat‐set temperature of at least 140°C was required to develop sufficient crimp contraction. The crystallinity and orientation of the PET were attributed mainly to the crimp contraction of the drawn fiber. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

2.
The ablation behavior of amorphous [polystyrene (PS), polycarbonate (PC)] and crystalline [PET, glass‐filled poly(butylene terephthalate) (PBT)] polymers by 248‐nm KrF excimer laser irradiation were investigated for different injection‐molding conditions, namely, injection flow rate, injection pressure, and mold temperature, as a possible method for evaluating processing effects in the specimens. For this purpose, dumbbell‐shaped samples were injection‐molded under different sets of processing conditions, and weight loss measurements were carried out for the different injection‐molding conditions. Some of the crystalline (PET) samples were annealed at different annealing times and temperatures. For PET, the weight loss decreased with increasing mold temperature and remained insensitive to injection flow rate. Annealing time and temperature significantly reduced weight loss in PET. For PBT, the weight loss due to laser ablation decreased with increasing material packing due to pressure, and it also showed some sensitivity to flow rate variation. The major effect was seen with glass‐filled PBT samples. The weight loss decreased drastically with increasing glass fiber content. Laser ablation allowed us to observe process‐induced fiber orientation by scanning electron microscopy in PBT samples. For PS and PC, the weight loss increased with increasing injection flow rate and mold temperature and decreased with increasing injection pressure. The position near the gate showed higher ablation than the position at the end for all the conditions. A decrease in the material orientation with injection speed and mold temperature led to an increase in the weight loss, whereas an increase in the injection pressure, and consequently orientation, led to a lower weight loss for PS and PC. Higher residual stress samples showed higher weight losses. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 2006  相似文献   

3.
Crystallization in polyamide 6 (nylon 6) fibers during annealing was studied in detail by following the changes that occurred in the neighborhood of crystalline relaxation temperatures, by using wide‐ and small‐angle X‐ray scattering and differential scanning calorimetry (DSC). Two distinct crystallization regimes were observed depending on whether annealing was carried out below or above onset of crystalline relaxation at ~190°C. In fibers annealed below 190°C, minor melting peaks were followed by exothermic transitions. These were attributed to ~1.5% (by weight) of microcrystals formed during annealing that melt and recrystallize during the DSC scan. These microcrystals are nucleated from unoriented amorphous chains between the lamellar stack within a fibril, and are shown to account for the observed increase in the crystalline orientation and decrease in permeability. Fibers annealed above 190°C did not show the exotherm and had significantly fewer microcrystals. The crystallization in this regime was attributed to the growth of existing lamellae, as evidenced by the increase in crystallite size, crystalline density, crystalline orientation, lamellar spacing, and lamellar intensity. The changes at annealing temperatures >190°C are accompanied by increased dyeability, indicative of more open amorphous regions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 447–454, 2006  相似文献   

4.
The effect of annealing on the microstructural evolution and mechanical properties of high‐density polyethylene parts molded via gas‐assisted injection molding was investigated using scanning electron microscopy, differential scanning calorimetry, two‐dimensional wide‐angle X‐ray diffraction and tensile testing. The results indicated that a variety of annealing temperatures could induce considerable variations in the hierarchical structures, crystallinity, lamellar thickness and yield stress of the molded bars. According to these results, the annealing temperatures could be divided into three regions. In the low‐temperature region of annealing at 80 °C, the spatial variation of the superstructure developed along the thickness direction and mechanical properties of the annealed sample were mainly unchanged and similar to those of the original specimen. At 100 and 120 °C, the intermediate temperature region of annealing, the thickness of the crystals, degree of orientation and yield stress of annealed samples were greatly improved. Finally, at 127 °C, the degree of orientation decreased and yield stress slightly improved, an indication of the high‐temperature annealing region being characterized by increasing melting/recrystallization and causing relaxation of oriented molecular chains. A model is proposed to interpret the mechanism of the annealing treatment of the samples at various temperatures. © 2013 Society of Chemical Industry  相似文献   

5.
Polyvinylidene fluoride hollow fibers were prepared by melt‐spinning technique under three spinning temperatures. The effects of annealing treatment on the structure and properties of hollow fiber were studied by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), tensile test, and scanning electron microscopy (SEM) measurements. DSC and WAXD results indicated that the annealing not only produced secondary crystallization but also perfected primary crystallization, and spinning and annealing temperature influenced the crystallinity of hollow fiber: the crystallinity decreased with the increase of spinning temperature; 140°C annealing increased the crystallinity, and hardly influenced the orientation of hollow fiber; above 150°C annealing increased the crystallinity as well, and furthermore had a comparative effect on the orientation. The tensile tests showed that the annealed samples, which did not present the obvious yield point, exhibited characteristics of hard elasticity, and all the hollow fiber had no neck phenomenon. Compared with the annealed sample, the precursor presented a clear yield point. In addition, the annealed samples had a higher break strength and initial modulus by contrast with the precursor, and the 140°C annealed sample showed the smallest break elongation. SEM demonstrated the micro‐fiber structure appeared in surface of drawn sample. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 935–941, 2007  相似文献   

6.
Rodlike polymer samples were made from three kinds of poly(ethylene terephthalate) (PET) pellets with different intrinsic viscosities (IV), and from polyalirate (Vectra) pellets. PET and Vectra fibers were produced using a melt‐electrospinning system equipped with a CO2‐laser melting device from these rodlike samples. The effects of IV value and laser output power on the fiber diameter of PET were investigated. Furthermore, the effect of the laser output power on the fiber diameter of Vectra was investigated. The crystal orientation of these produced fibers was also investigated by X‐ray photographs. The following conclusions were reached: (i) the diameter of PET fiber decreases with increasing laser output power; (ii) the minimum average diameter of PET fibers is scarcely influenced by the value of IV; (iii) the electrospun PET fibers show isotropic crystal orientation; (iv) fibers having an average fiber diameter smaller than 1 μm cannot be obtained from PET and Vectra using the system developed; and (v) preferred liquid crystal orientation can be seen in electrospun Vectra fibers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
The thermal stability of ultrahigh‐molecular‐weight polyethylene (UHMWPE) should be paid attention in its applications, although the fiber has excellent flexible tensile properties. The measurements for two kinds of UHMWPE fibers, Dyneema SK65 (The Netherlands) and ZHF (Beijing, China), were carried out at different annealing temperatures and for different aging times. Experimental and regression analysis results showed that the aging behavior of the fibers followed an exponential attenuation with the annealing temperature and aging time. The critical temperature for the safe use of the fibers was equal to or lower than 70°C and depended on the glass‐transition temperature; this was validated by tensile tests. The difference between the two fibers in the thermal properties resulted from the intrinsic supermolecular structures of the two fibers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 310–315, 2005  相似文献   

8.
Polyethylene terephthalate (PET) melt‐spun fibers were modified with multiwall carbon nanotubes (MWCNT) to obtain conductive microfibers smaller than 90 μm in diameter. Physical properties such as crystallinity and orientation of as‐spun fibers were studied by X‐ray diffraction, Raman spectroscopy, and microscopy techniques at different draw ratios (DR) and MWCNT concentrations. Morphological and orientation analysis of MWCNT after melt‐spinning process showed agglomerates formation and highly oriented CNTs. The study of the orientation of PET crystalline phase in drawn fibers proved that the addition of nanoparticles decreases the orientation of crystalline units inside the fibers. The orientation of MWCNT as well as that of PET chains was studied using Raman spectroscopy at different DR and a high degree of CNT orientation was observed under high DR conditions. Mechanical and electrical properties of as‐spun fibers were also investigated. Our results showed that it was possible to achieve conductive fibers at a MWCNT concentration of 2% w/w, and more conductive fibers using higher DR were also obtained without increasing the MWCNT concentration. Mechanical properties results showed interestingly high value of maximum tensile strain at break (εmax) of nanocomposite fibers, up to three times more than pure PET fibers. POLYM. ENG. SCI., 50:1956–1968, 2010. © 2010 Society of Plastics Engineers  相似文献   

9.
The concentrations and temperatures of ultrahigh‐molecular‐weight polyethylene (UHMWPE) gel solutions exhibited a significant influence on their rheological and spinning properties. The shear viscosities of UHMWPE solutions increased consistently with increasing concentrations at a constant temperature above 80°C. Tremendously high shear viscosities of UHMWPE gel solutions were found as the temperatures reached 120–140°C, at which their shear viscosity values approached the maximum. The spinnable solutions are those gel solutions with optimum shear viscosities and relatively good homogeneity in nature. Moreover, the gel solution concentrations and spinning temperatures exhibited a significant influence on the drawability and microstructure of the as‐spun fibers. At each spinning temperature, the achievable draw ratios obtained for as‐spun fibers prepared near the optimum concentration are significantly higher than those of as‐spun fibers prepared at other concentrations. The critical draw ratio of the as‐spun fiber prepared at the optimum concentration approached a maximum value, as the spinning temperature reached the optimum value of 150°C. Further investigations indicated that the best orientation of the precursors of shish‐kebab‐like entities, birefringence, crystallinity, thermal and tensile properties were always accompanied with the as‐spun fiber prepared at the optimum concentration and temperature. Similar to those found for the as‐spun fibers, the birefringence and tensile properties of the draw fibers prepared at the optimum condition were always higher than those of drawn fibers prepared at other conditions but stretched to the same draw ratio. Possible mechanisms accounting for these interesting phenomena are proposed.  相似文献   

10.
High‐tension multiannealing (HTMA) was applied to improve the tensile properties of poly(p‐phenylene sulfide) fibers, which was furthermore applied to the fibers produced and improved with the zone‐drawing and zone‐annealing treatments. The HTMA treatment was repeatedly applied to the fibers under the conditions of a 250°C temperature and an applied tension of between 201.0 and 188.0 MPa. As a result, at the 13th treatment the degree of crystallinity increased to 40%. On the other hand, the orientation factor of crystallites increased dramatically to 0.982 during the zone‐drawing treatment, but increased only slightly during the subsequent treatments of zone annealing and HTMA. The finally obtained fiber had a tensile modulus of 10.4 GPa and a tensile strength of 0.73 GPa. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1569–1576, 2000  相似文献   

11.
Pre‐drawn aromatic copolysulfonamide (co‐PSA) fibers were prepared by wet spinning and then heat drawing at temperatures varying from 350 to 390 °C, which are below the decomposition temperature. The fibers were then characterized using tensile testing, dynamic mechanical analysis, wide‐angle X‐ray diffraction and small‐angle X‐ray scattering. The relationship between structure and properties of the co‐PSA fibers drawn at different temperatures was investigated. The heat‐drawn co‐PSA fibers displayed similar glass transition temperature of about 355 °C, which was higher than that of pre‐drawn co‐PSA fibers of 345 °C. The crystal orientation was high as a crystalline structure formed during heat drawing and the crystallinity increased with the heat‐drawing temperature. However, the tenacity of the co‐PSA fibers did not increase linearly with the draw temperature. When the drawing temperature was higher than the glass transition temperature, a decrease in tenacity was observed, which could be attributed to an increase of crystallite size of the (100) plane and a decrease of the long period of the lamellar structure. © 2014 Society of Chemical Industry  相似文献   

12.
The thermal characteristics of inherently conductive polyaniline (PANi) fiber have been studied using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Fibers show five major weight losses at ∼100°C, 165°C, 215°C, 315°C, and 465°C, which are associated with the removal of moisture, residual solvent, decompositions of the sulfonic acid and degradation of PANi fiber, respectively. The 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPSA) that dopes the PANi (in fiber form) performs two‐stage decompositions. The conductivity of the drawn fibers aged at 50°C, 100°C, 150°C, and 190°C under vacuum for various periods of time decreases, particularly at temperatures higher than 100°C. The reduction in conductivity of the fiber aged at temperatures lower than 100°C is mainly due to the evaporation of the residual solvent (15–20% in the as‐spun fiber). Further decrease in conductivity of the fiber aged at temperatures higher than 100°C is caused by the decomposition of the dopant AMPSA. The temperature‐dependent conductivity of the fiber was measured at 15 K (−258.5°C) to 295 K (21.5°C). The conductivity of both aged and un‐aged fibers is all temperature activated, however, the conductivity of the un‐aged fibers is higher than that of the aged fibers. Although a negative temperature coefficient was observed in the temperature range from 240 K (–24.5°C) to 270 K (–3.5°C) for the un‐aged fibers, it was disappeared when the fibers were thermal aged at 100°C for 24 h in vacuum oven. These results indicate that the residual solvent trapped inside the fiber enhanced the electrical conductivity of the fibers and its “metallic” electrical conductivity at temperatures ∼263 K (–10°C). © 2001 John Wiley & Sons, Inc. † J Appl Polym Sci 79: 2503–2508, 2001  相似文献   

13.
The change of crimp contraction and shrinkage in the melt spinning and drawing process of polyethylene terephthalate (PET) side‐by‐side bicomponent fibers was studied. Regular PET and modified PET were selected to make a latent crimp yarn. The modified PET was synthesized to increase thermal shrinkage. The crimp contraction is mainly dependent on drawing conditions such as draw ratio, heat‐set temperature, and drawing temperature. Difference in shrinkage between the PET and the modified PET causes the self‐crimping of bicomponent fibers. Although changing the heat‐set temperature and the drawing temperature can not affect dimensional change, the crimp contraction varies with those variables. As the heat‐set temperature and the drawing temperature decrease, the crimp contraction increases. Difference in elongation also affects the crimp contraction in the effect of draw ratio. When the modified PET with neopentyl group was used for highly shrinkable part, the crimp contraction is greater in comparison with modified PET with dimethyl isophthalate. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1362–1367, 2006  相似文献   

14.
Poly(ethylene terephthalate) (PET) sheets of different crystallinity were obtained by annealing the amorphous PET (aPET) sheets at 110°C for various times. The peaks of enthalpy recovery and double cold‐crystallization in the annealed aPET samples with different crystallinity were investigated by a temperature‐modulated differential scanning calorimeter (TMDSC) and a dynamic mechanical analyzer (DMA). The enthalpy recovery peak around the glass transition temperature was pronounced in TMDSC nonreversing heat flow curves and was found to shift to higher temperatures with higher degrees of crystallinity. The magnitudes of the enthalpy recovery peaks were found to increase with annealing times for samples annealed ≤30 min but to decrease with annealing times for samples annealed ≥40 min. The nonreversing curves also found that the samples annealed short times (≤40 min) having low crystallinity exhibited double cold‐crystallization peaks (or a major peak with a shoulder) in the region of 108–130°C. For samples annealed long times (≥50 min), the cold‐crystallization peaks were reduced to one small peak or disappeared because of high crystallinity in these samples. The double cold‐crystallization exotherms in samples of low crystallinity could be attributed to the superposition of the melting of crystals, formed by the annealing pretreatments, and the cold‐crystallizations occurring during TMDSC heating. The ongoing crystallization after the cold crystallization was clearly seen in the TMDSC nonreversing heat flow curves. DMA data agreed with TMDSC data on the origin of the double cold‐crystallization peaks. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
In this paper, we introduce a new draw technique for polymer orientation and apply it to different polymer fibers: poly(ethylene terephthalate) or PET, nylon 6,6, and ultra‐high molecular polyethylene (UHMWPE). In this technique, a polymer is drawn uniaxially in supercritical CO2 using a custom high‐pressure apparatus. This technique can be used in replacement of a traditional drawing process or as a post‐treatment process. With PET, the technique is not effective at temperatures at or below 130°. In contrast, the process is highly effective for nylon 6,6 where CO2 drawn fibers show significantly higher crystallinity and orientation along with improved mechanical properties. While the fibers are plasticized, the drawability of the fibers is only slightly dependent on temperature. High pressure CO2 drawing of ultrahigh molecular weight polyethylene (UHMWPE) fibers is equally effective. Commercial high performance fibers can be drawn up to a ratio of 1.9 in asecond stage, resulting in large increases in tensile modulus and small improvements in tensile strength.  相似文献   

16.
Two ferrocenyl‐substituted N‐acetyl‐2‐pyrazolines, N‐acetyl‐3‐(2‐furyl)‐5‐ferrocenyl‐2‐pyrazoline (Fc‐1) and N‐acetyl‐3‐(2‐thienyl)‐5‐ferrocenyl‐2‐pyrazoline (Fc‐2) electrospun fibers, were produced in the presence of plasma‐modified chitosan (PMCh)/poly(ethylene terephthalate) (PET) supporting polymers with an electrospinning method. The morphological and chemical characterizations of the PMCh/PET/Fc‐1 and PMCh/PET/Fc‐2 electrospun fibers were determined by scanning electron microscopy coupled with energy‐dispersive X‐ray spectroscopy analysis. Thermogravimetric analysis results indicated the presence of ferrocene within the PMCh/PET nanofibers. The electrochemical behavior of the PMCh/PET/Fc‐1 and PMCh/PET/Fc‐2 electrospun fibers were investigated by cyclic voltammetry measurements based on the ferrocene/ferrocenium redox couple. The new PMCh/PET/Fc‐1 and PMCh/PET/Fc‐2 electrospun fibers aggregated on the indium tin oxide were used for phosphate anion sensing. The highest oxidation peak currents were observed for the PMCh/PET/Fc‐1 electrospun fibers at about 0.56 V in 0.1M phosphate buffer. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43344.  相似文献   

17.
Automated variable wavelength interference microscope was used to study the effect of annealing process on the physical properties of isotactic polypropylene fibers (4:1 draw ratio, 515 tex, Bolton UK). The isotactic polypropylene (iPP) fibers were annealed at temperatures ranging from 60°C to 140°C. The spectral dispersion curves of refractive indices and birefringence of iPP fibers were determined at different annealing temperatures. The resulting data were used to determine the optical orientation function, orientation angle, degree of crystallinity, and dispersion parameters of the annealed samples. The study indicates that, the measured birefringence, orientation function, and the dispersion of crystallinity of iPP fibers have been improved with the increasing of annealing temperature. POLYM. ENG. SCI., 59:35–41, 2019. © 2018 Society of Plastics Engineers  相似文献   

18.
Bulk development of air‐textured poly(trimethylene terephthalate) (PTT) bulk continuous filaments was studied by varying two texturing parameters, yarn preheating and texturing hot air temperatures. The yarns were subsequently heat treated from 80 to 160°C. Bulk was found to go through a maximum with increasing heat‐treatment temperature because of two competing mechanisms. Upon heat treatment, the fiber shrunk and developed bulk; heat treatment also simultaneously induced structural reorganization through annealing and stabilized the fiber against shrinkage. When the later mechanism became dominant, bulk development decreased with further increase of heat‐treatment temperature. The temperature at which the maximum occurred increased when the yarn preheating or texturing air temperatures were increased. Depending on the extent of annealing and structural reorganization during yarn preheating and during texturing, fibers with equivalent bulk measured at a single temperature did not behave the same way over a range of heat‐treatment temperatures. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1011–1017, 2004  相似文献   

19.
Melt spinning at semi‐industrial conditions of carbon black (CB) containing textiles fibers with enhanced electrical conductivity suitable for heating applications is described. A conductive compound of CB and high density polyethylene (HDPE) was incorporated into the core of bi‐component fibers which had a sheath of polyamide 6 (PA6). The rheological and fiber‐forming properties of a low‐structured and a high‐structured CB/HDPE composite were compared in terms of their conductivity. The low‐structured CB gave the best trade‐off between processability and final conductivity. This was discussed in terms of the strength of the resulting percolated network of carbon particles and its effect on the spin line stability during melt spinning. The conductivity was found to be further enhanced with maintained mechanical properties by an in line thermal annealing of the fibers at temperatures in the vicinity of the melting point of HDPE. By an adequate choice of CB and annealing conditions a conductivity of 1.5 S/cm of the core material was obtained. The usefulness of the fibers for heating applications was demonstrated by means of a woven fabric containing the conductive fibers in the warp direction. By applying a voltage of 48 V the surface temperature of the fabric rose from 20 to 30°C. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42255.  相似文献   

20.
Crosslinked elastic fibers, made from a low density (0.875 g/cc) ethylene‐octene copolymer, were studied after constrained at 300% elongation and annealed at different temperatures (40–80°C) to simulate conditions encountered in yarn and textile processing. It is surprisingly found that the transition from pseudo hexagonal to orthorhombic structure is much faster under simultaneously constraining and annealing than that without strain. Almost a neat orthorhombic structure can be produced when the fiber is annealed at 60°C. Annealing above 60°C leads to mixed orthorhombic and pseudo‐hexagonal structures. The average melting point increases with an increase in the fraction of orthorhombic phase. It is also surprisingly noted that the simultaneously constraining and annealing of the fiber can produce highly oriented crystals, even annealed at 80°C (above the average melting point of 65°C). The unique effect of annealing under large strain can be attributed to the crosslinking of the fiber, which makes it possible for the fiber to have strong chain orientation (even in molten state) under large strain. The strong chain orientation in melt leads to a faster structural transition from pseudo hexagonal to more stable orthorhombic structure. The strong chain orientation is also very likely the reason why highly oriented crystal and amorphous phases are formed, including the case where the fiber is annealed above melting point. These findings could be leveraged for improving thermal and mechanical properties of the fabrics made with such fibers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3565–3573, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号