首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self‐sustained cast films formed from heterogeneous blends of poly(2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐1,4‐phenylenevinylene) (MEH‐PPV) conjugated polymer and thermoplastic polyurethane (TPU) were investigated by photoluminescence (PL) and scanning electron microscopy (SEM). A blue shift is observed for the pure electronic transition PL peak (E00) with decreasing MEH‐PPV concentration. The two clear shoulders in the PL spectra at higher energy than the E00 peak appear due to the formation of small conjugation segments of the MEH‐PPV molecules at the interface of the spherical MEH‐PPV domains. This assumption and the origin of the blue shift were confirmed by correlating the average size of the MEH‐PPV domains, observed from SEM images, and the analysis of the PL spectra at low temperatures. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
A series of triarylaminooxadiazole‐containing tetraphenylsilane light emitting polymer (PTOA) and poly(2‐methoxy, 5‐(2′‐ethyl‐hexyloxy)‐p‐phenylene‐vinylene) (MEH‐PPV) based white light emitting polymer devices (PLEDs) were fabricated to study blue and orange–red emitter composition and light emitting layer processing effects on white emission electroluminescence properties. Color purity, current turn‐on voltage, brightness, and current efficiency were strongly determined by MEH‐PPV content and the thin film processing condition. The intensity of PTOA blue emission was equal to that of MEH‐PPV orange–red emission when the device was fabricated by a polymer composite film containing 10 wt % of MEH‐PPV. Color purity [Commission Internationale de L'Eclairage (CIEx,y) coordinates (0.26,0.33)] was nearly white emission under applied 8 V. The brightness and current efficiency of PTOA‐MEH‐PPV composite film based devices increased as MEH‐PPV content increased. Furthermore, white emission blue shifted with increasing spin‐rate of thin film coating and applied voltage. Low turn‐on voltage, high current density, and high brightness were obtained for the device fabricating with light emitting layer coating with high spin‐rate. Moreover, low current efficiency was obtained for the PLED with a thinner light‐emitting layer. A white emission CIE (0.28,0.34) was obtained for PTOA‐MEH‐PPV based white PLED. White PLED brightness and efficiency can be as high as 700 cd/m2 and 0.78 cd/A, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

3.
Poly[2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐para‐phenylene vinylene] (MEH‐PPV)/silica nanoparticle hybrid films were prepared and characterised. Three kinds of materials were compared: parent MEH‐PPV, MEH‐PPV/silica (hybrid A films), and MEH‐PPV/coupling agent MSMA/silica (hybrid B films), in which MSMA is 3‐(trimethoxysilyl) propyl methacrylate. It was found that the hybrid B films could significantly prevent macrophase separation, as evidenced by scanning electron and fluorescence microscopy. Furthermore, the thermal characteristics of the hybrid films were largely improved in comparison with the parent MEH‐PPV. The UV‐visible absorption spectra suggested that the incorporation of MSMA‐modified silica into MEH‐PPV could confine the polymer chain between nanoparticles and thus increase the conjugation length. The photoluminescence (PL) studies also indicated enhancement of the PL intensity and quantum efficiency by incorporating just 2 wt% of MSMA‐modified silica into MEH‐PPV. However, hybrid A films did not show such enhancement of optoelectronic properties as the hybrid B films. The present study suggests the importance of the interface between the luminescent organic polymers and the inorganic silica on morphology and optoelectronic properties. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
A copolymer of dendronized poly(p‐phenylene vinylene) (PPV), poly{2‐[3′,5′‐bis (2′‐ethylhexyloxy) bnenzyloxy]‐1,4‐phenylene vinylene}‐co‐poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylene vinylene] (BE‐co‐MEH–PPV), was synthesized with the Gilch route to improve the electroluminescence and photovoltaic properties of the dendronized PPV homopolymer. The polymer was characterized by ultraviolet–visible absorption spectroscopy, photoluminescence spectroscopy, and electrochemical cyclic voltammetry and compared with the homopolymers poly{2‐[3′, 5′‐bis(2‐ethylhexyloxy) benzyloxy‐1,4‐phenylene vinylene} (BE–PPV) and poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH–PPV). Polymer light‐emitting diodes based on the polymers with the configuration of indium tin oxide (ITO)/poly(3,4‐ethylene dioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/polymer/Ca/Al were fabricated. The electroluminescence efficiency of BE‐co‐MEH–PPV reached 1.64 cd/A, which was much higher than that of BE–PPV (0.68 cd/A) and a little higher than that of MEH–PPV (1.59 cd/A). Photovoltaic properties of the polymer were studied with the device configuration of ITO/PEDOT : PSS/polymer : [6,6J‐phenyl‐C61‐butyric acid methyl ester] (PCBM)/Mg/Al. The power conversion efficiency of the device based on the blend of BE‐co‐MEH–PPV and PCBM with a weight ratio of 1 : 3 reached 1.41% under the illumination of air mass 1.5 (AM1.5) (80 mW/cm2), and this was an improvement in comparison with 0.24% for BE–PPV and 1.32% for MEH–PPV under the same experimental conditions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Three hyperbranched phenylene vinylenes (HPVs)—H‐mn, H‐es, and H‐py—were used in fabricating polymer photovoltaic cells (PVCs). PVCs with photoactive layers composed of pure HPV, a blend of HPV and C60, and a blend of HPV, poly(2‐methoxyl‐5,2′‐ethylhexyoxyl‐1,4‐phenylene vinylene) (MEH‐PPV), and C60, were fabricated, and their current–voltage characteristics were measured and investigated. The PVC with photoactive layers composed of H‐es and C60 showed promising photovoltaic characteristics, with an energy‐conversion efficiency of 0.035%, when illuminated under 85 mW/cm2 white light. The short‐circuit current and energy‐conversion efficiency of the PVCs based on H‐mn/C60 and H‐py/C60 were greatly improved when they were blended with a small amount of MEH‐PPV. The incident photon‐to‐collected‐electron efficiency of the HPV/MEH‐PPV/C60 PVCs indicated that both HPVs and MEH‐PPV contributed to the photocurrent. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1459–1466, 2004  相似文献   

6.
Two novel poly(1,4‐phenylenevinylene) (PPV) derivatives containing liquid crystalline oxadiazole side chains were prepared by a dehydrochlorination process. The homopolymer poly(2‐methoxy‐5‐((2‐methoxy‐phenyl)‐5‐hexyloxy‐phenyloxy‐1,3,4‐oxadiazole)‐1,4‐phenylenevinylene) (HO–PE6) is insoluble in common solvents, whereas the copolymer poly(2‐methoxy‐5‐((2‐methoxy‐phenyl)‐5‐hexyloxy‐phenyloxy‐1,3,4‐oxadiazole))‐(2‐methoxy‐5‐(2′‐ethylhexyloxy))‐1,4‐phenylenevinylene) (CO–PE6) is soluble in common solvents such as chloroform, THF, and p‐xylene. The molecular structure of CO–PE6 was confirmed by FTIR, 1H‐NMR, UV–vis spectroscopy, and polarized light microscopy. CO–PE6 showed a maximum emission at 556 nm in chloroform and at 564 nm in solid film, when excited at 450 nm. The maximum electroluminescence emission of the device indium–tin oxide (ITO)CO–PE6/Al is at 555 nm. The turn‐on voltage of LEDs based on CO–PE6 and MEH–PPV is 6.5 and 8.5 V, respectively. The electron mobility of CO–PE6 is higher than that of MEH–PPV based on the results of current–voltage and electrochemical behavior of both MEH–PPV and CO–PE6. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 396–403, 2004  相似文献   

7.
Fluorescent microspheres have great potential for use as probes in biological diagnostics. In this context, poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐p‐phenylenevinylene] (MEH‐PPV), a conjugated polymer which has high quantum yield, controllable emitting wavelength and facile processing in manufacture, was used as a fluorescent material for the preparation of polystyrene (PS)/MEH‐PPV fluorescent microspheres via miniemulsion polymerization. We demonstrate that the emitting wavelength of the PS/MEH‐PPV fluorescent microspheres can be regulated by changing the amount of azobisisobutyronitrile initiator in the polymerization process. Using acrylic acid comonomer, poly[styrene‐co‐(acrylic acid)]/MEH‐PPV fluorescent microspheres with functional carboxyl groups were also prepared. All the microspheres were characterized using transmission electron microscopy, scanning electron microscopy, fluorescence microscopy and fluorescence spectrophotometry. The functional carboxyl groups were characterized using Fourier transform infrared spectroscopy. This work provides a novel platform for the preparation of conjugated polymer fluorescent microspheres for biological applications. © 2012 Society of Chemical Industry  相似文献   

8.
Two classes of light emitting Poly(p‐phenylenevinylene) (PPV) based conjugated‐nonconjugated copolymers (CNCPs) have been synthesized. The conjugated chromophores containing 2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene (MEHPV) and 2,5‐dimethyl‐1,4‐phenylenevinylene (DMPV) moieties are rigid segments and nonconjugated portion containing hexyl units are flexible in nature. All copolymers were synthesized by well‐known Wittig reaction between the appropriate bisphosphonium salts and the dialdehyde monomers. The resulting polymers were found to be readily soluble in common organic solvents like chloroform, THF and chlorobenzene. The effect of chromophore substituents on the optical and redox properties of the copolymers has been investigated. Color tuning was carried out by varying the molar percentage of the comonomers. The UV‐Vis absorption and PL emission of the copolymers were in the range 314–395 nm and 494–536 nm respectively. All the polymers show good thermal stability. Polymer light‐emitting diodes (PLEDs) were fabricated in ITO/PEDOT:PSS/emitting polymer/cathode configurations of selected polymers using double‐layer, LiF/Al cathode structure. The emission maxima of the polymers were around 499–536 nm, which is a blue‐green part of the color spectrum. The threshold voltages of the EL polymers were in the range of 5.4–6.2 V. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
A series of novel porphyrin‐grafted poly (phenylene vinylene) derivatives, Porp‐RO‐PPV, were synthesized by a simple two‐step method. These copolymers contain conjugated poly(phenylene vinylene) derivatives as polymer backbone and covalently linked porphyrin units as side chain, which were confirmed by FTIR and 1H NMR, and used for photovoltaic devices. The thermal, optical properties and sensitizing effect, and photovoltaic properties have been investigated. The emission spectra of Porp‐RO‐PPV copolymers revealed the existence of strong energy transfer from PPV backbone to porphyrin units. The energy conversion efficiency (ηe) of photovoltaic devices based on Porp‐RO‐PPV+PCBM reached 0.33% (78.2 mW/cm2, AM1.5) and porphyrin units in the copolymers showed good sensitizing effect at low concentration. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Poly(p‐phenylene vinylene) (PPV) derivatives are an important class of conjugated polymers, known for their applications as electroluminescent materials for light‐emitting devices and sensors. These derivatives are highly susceptible to photodegradation by the combined action of oxygen and light. Here, the use of various commercial polymers as protective coatings against the photodegradation of PPV derivatives was explored. Cast films of two similar PPV derivatives, poly[(2‐methoxy‐5‐n‐hexyloxy)‐p‐phenylene vinylene] and poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐p‐phenylene vinylene], were submitted to photodegradation by exposure to white light under atmospheric conditions in order to verify if the type of side chain (linear or branched) had an effect on the photodegradation. No significant differences in the photodegradation behaviour between the two polymers were noticed. The following commercial polymers were tested as protective coatings for the PPV derivative cast films: 99 and 80% hydrolysed poly(vinyl alcohol) (PVA) and starch. The best results were achieved using coatings of 99% hydrolysed PVA, which increased about 700 times the time necessary for complete degradation of the PPV derivative films. The results show the effectiveness of this coating in minimizing and, possibly, controlling the effects of the photodegradation of PPV derivative films, which can be useful in many applications, e.g. oxygen sensors. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
Impurities containing methylene bridges between 2‐((2′‐ethylhexyl)oxy)‐5‐methoxy‐benzene molecules are inevitably formed during the synthesis of 1,4‐bis(chloromethyl)‐2‐((2′‐ethylhexyl)oxy)‐5‐methoxy‐benzene, the monomer used in the preparation of poly[2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV), but they can be removed by double recrystallization of the monomer prior to polymerization. When impurities containing methylene bridges participate in a Gilch polymerization, the methylene bonds formed in the main chains are prone to break at 200 °C, that is, at least 150 °C below the major degradation temperature of defect‐free MEH‐PPV. Interestingly, the thermal treatment used to break the methylene bonds present reduces the chain aggregation of MEH‐PPV during film formation and induces its blends with poly(2,3‐diphenyl‐5‐octyl‐p‐phenylene‐vinylene) (DPO‐PPV) to form a morphology similar to that of block copolymers. Both significantly enhance the luminescence properties. Copyright © 2006 Society of Chemical Industry  相似文献   

12.
Two new poly(p‐phenylenevinylene) (PPV) derivatives containing oxadiazole moiety (OXA‐PPV1 and OXA‐PPV2) were synthesized by the Wittig condensation polymerization reaction. Their thermal and light‐emitting properties were investigated. The single‐ and triple‐layer electroluminescent (EL) devices with configurations of ITO/polymer/Al and ITO/polymer/OXD‐7/Alq3/Al were fabricated. They exhibited blue emission at 470 nm for OXA‐PPV1 and green emission at 560 nm for OXA‐PPV2. The turn‐on voltages of triple‐layer device were 11 V for OXA‐PPV1 and 8 V for OXA‐PPV2. The triple‐layer EL devices showed much better performance than did the single‐layer devices. The spectra indicated energy transfer occurred from segments of side chain to polymer backbone. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 422–428, 2002  相似文献   

13.
Two novel phenyl‐substituted poly(p‐phenylene vinylene) derivatives, poly{2‐[3′,4′‐(2″‐ethylhexyloxy)(3″,7″‐dimethyloctyloxy)benzene]‐1,4‐phenylenevinylene} (EDP‐PPV) and poly{2‐[3′,4′‐(2″‐ethylhexyloxy)(3″,7″‐dimethyloctyloxy)benzene]‐5‐methoxy‐1,4‐phenylenevinylene} (EDMP‐PPV), and their copolymer, poly{2‐[3′,4′‐(2″‐ethylhexyloxy)(3″,7″‐dimethyloctyloxy)benzene]‐1,4‐phenylene‐vinylene‐co‐2‐[3′,4′‐(2″‐ethylhexyloxy)(3″,7″‐dimethyloctyloxy)benzene]‐5‐methoxy‐1,4‐phenylenevinylene} (EDP‐co‐EDMP‐PPV; 4:1, 1:1, and 1:4), were successfully synthesized according to the Gilch route. The structures and properties of the monomers and the resulting conjugated polymers were characterized with 1H‐NMR, 13C‐NMR, elemental analysis, gel permeation chromatography, thermogravimetric analysis, ultraviolet–visible absorption spectroscopy, and photoluminescence and electroluminescence (EL) spectroscopy. The EL polymers possessed excellent solubility in common solvents and good thermal stability with a 5% weight loss temperature of more than 380°C. The weight‐average molecular weights and polydispersity indices of EDP‐PPV, EDMP‐PPV, and EDP‐co‐EDMP‐PPV were 1.40–2.58 × 105, and 1.19–1.52, respectively. Double‐layer light‐emitting diodes with the configuration of indium tin oxide/polymer/tris(8‐hydroxyquinoline)aluminum/Al devices were fabricated, and EDP‐co‐EDMP‐PPV (1:1) showed the highest EL performance and exhibited a maximum luminance of 1050 cd/m2 at 19.5 V. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1259–1266, 2005  相似文献   

14.
Two new poly(p‐phenylenevinylene) (PPV) derivatives containing the oxadiazole moiety (OXA–PPV1 and OXA–PPV2) were synthesized by the Wittig condensation polymerization reaction and their thermal and light‐emitting properties were investigated. The single‐layer and triple‐layer electroluminescent (EL) devices with configurations of ITO/OXA–PPV1/Al and ITO/OXA–PPV1/OXD/Alq3/Al were fabricated. They both exhibited blue emission at 460 nm. For comparison, the PPV derivative containing the oxadiazole moiety only in the side chains (OXA–PPV2) was also synthesized. Both single‐layer and triple‐layer EL devices with OXA–PPV2 as the emissive layer emitted green‐light at 560 nm. The turn‐on voltages of the triple‐layer device was 11 V for OXA–PPV1 and 8 V for OXA–PPV2. The triple‐layer EL devices showed much better performance than that of the single‐layer devices. The spectra indicated that energy or electron transfer occurred from the side‐chain oxadiazole to the main‐chain styrene unit. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2424–2428, 2002  相似文献   

15.
The photoluminescence (PL) spectra of poly[2,5‐bis‐(tri‐ethoxy)‐1,4‐phenylene vinylene] (BTEO–PPV) films are blue‐shifted with increasing thermal annealing temperature. It is known from the UV–vis absorption spectra that thermal annealing decreases the conjugation length of the polymer. For BTEO–PPV films, unlike with MEH–PPV films, the symmetric triethoxy side groups further block aggregation of the polymer chains. The absorption Fourier transfer infrared spectra showed that thermal annealing in atmosphere destroyed the chain structure of BTEO–PPV film by thermal oxidation to form aldehyde groups, which resulted in low PL efficiency of the annealed films. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

16.
A blue light‐emitting statistical poly(p‐phenylenevinylene) (PPV) copolymer with hole‐transporting carbazole and electron‐transporting oxadiazole pendant groups attached to the kinked m‐terphenyl unit was prepared by Heck coupling between 1,4‐divinylbenzene and dibromides. The latter were synthesized through pyrylium salts. The polymer had optical band gap of 2.89 eV and emission maximum at 446 nm in THF solution and 434 nm in thin film. It showed a pure blue emission with no aggregates or excimers formed even in solid state because of the long and bulky pendant groups. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3842–3849, 2006  相似文献   

17.
Two novel poly(p‐phenylene vinylene) (PPV) derivatives with conjugated thiophene side chains, P1 and P2, were synthesized by Wittig‐Horner reaction. The resulting polymers were characterized by 1H‐NMR, FTIR, GPC, DSC, TGA, UV–Vis absorption spectroscopy and cyclic voltammetry (CV). The polymers exhibited good thermal stability and film‐forming ability. The absorption spectra of P1 and P2 showed broader absorption band from 300 to 580 nm compared with poly[(p‐phenylene vinylene)‐alt‐(2‐methoxy‐5‐octyloxy‐p‐phenylene vinylene)] (P3) without conjugated thiophene side chains. Cyclic voltammograms displayed that the bandgap was reduced effectively by attaching conjugated thiophene side chains. This kind of polymer appears to be interesting candidates for solar‐cell applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
A polyether, poly[(2,5‐dimethylene‐1,3,4‐oxadiazole)dioxy‐1,4‐phenylene‐1,2‐ethenylene‐1,4‐phenylene‐1,2‐ethenylene‐1,4‐phenylene], based on short alternating conjugated oxadiazole units, has been synthesized, which is a kind of PPV derivative that emits blue light. The resulting polymer is fairly soluble in chloroform. The synthesized polymer shows a UV–visible absorbency maximum wavelength around 310 nm in solution. The photoluminescence maximum wavelength for the resulting polymer appears around 470 nm. The polymer also exhibits good thermal stability up to 300°C under N2 atmosphere. It is also observed that the onset temperature of thermal decomposition is as high as 355°C. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2682–2686, 2002  相似文献   

19.
A novel π‐conjugated poly[di(p‐phenyleneethynylene)‐alt‐(p‐phenylenecyanovinylene)] having n‐octyloxy side chains (PPE‐C8PPE‐PPV) was prepared by polymerization of the monomer DEDB with BCN. Chemical structure of the polymer obtained was confirmed by 1H NMR, FTIR, and EA. PPE‐C8PPE‐PPV had a molecular weight enough to fabricate the electroluminescent (EL) device, and showed a good organosolubility, excellent thermal stability, and film‐forming property. In UV absorption and PL spectra in film it showed a maximum at 430 and 543 nm, respectively, which appeared 5 and 41 nm longer wavelengths than that of the solution, respectively. HOMO, LUMO energy levels and band gap were determined to be ?5.70, ?3.29, and 2.41 eV, respectively. Two EL devices with low‐work function cathodes were fabricated with the structures of ITO/PEDOT/PPE‐C8PPE‐PPV/cathodes (LiF/Al and Mg:Ag/Ag). The both devices exhibited a bright green light emission at 545 nm and the maximum luminescence of 197 cd/cm2 (LiF/Al) and 158 cd/cm2 (Mg:Ag/Ag). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Brominated poly(bis(4-methylphenoxyphosphazene) was allowed to react with 1,4-bischloromethylbenzene or 1,4-bischloromethyl-2,5-dimethoxybenzene in solution using phase transfer catalyst or potassium t-butoxide. Poly(p-phenylene vinylene) or poly(2,5-methoxy-1,4-phenylene vinylene) grafted organophosphazene copolymers were obtained. The UV-Vis absorption, photoluminescent, and thermal properties of the copolymers were measured. The copolymers are complete soluble in common organic solvents and fluoresce in the blue color range. The copolymers were used to build a series of organic light emitting diode (OLED). Only weak to nominated intensities with emission color from blue to red were obtained. The photoluminescent and electroluminescent (EL) spectra indicated there is a distribution in the PPV conjugated length. The compositions of the copolymers before and after the graft reaction were analyzed using NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号