首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper discusses the preparation of microporous fibrous membranes from PVdF solutions with different polymer contents, using the electrospinning technique. Electrospun PVdF-based fibrous membranes with average fiber diameters (AFD's) of 0.45-1.38 μm have an apparent porosity and a mean pore size (MPS) of 80-89% and 1.1-4.3 μm, respectively. They exhibited a high uptake of the electrolyte solution (320-350%) and a high ionic conductivity of above 1 × 10−3 s/cm at room temperature. Their ionic conductivity increased with the decrease in the AFD of the fibrous membrane due to its high electrolyte uptake. The interaction between the electrolyte molecules and the PVdF with a high crystalline content may have had a minor effect on the lithium ion transfer in the fibrous polymer electrolyte, unlike in a nanoporous gel polymer electrolyte. The fibrous polymer electrolyte that contained a 1 M LiPF6-EC/DMC/DEC (1/1/1 by weight) solution showed a high electrochemical stability of above 5.0 V, which increased with the decrease in the AFD The interfacial resistance (Ri) between the polymer electrolyte and the lithium electrode slightly increased with the storage time, compared with the higher increase in the interfacial resistance of other gel polymer electrolytes. The prototype cell (MCMB/PVdF-based fibrous electrolyte/LiCoO2) showed a very stable charge-discharge behavior with a slight capacity loss under constant current and voltage conditions at the C/2-rate of 20 and 60 °C.  相似文献   

2.
Polymer electrolyte based lithium ion batteries represent a revolution in the battery community due to their intrinsic enhanced safety, and as a result polymer electrolytes have been proposed as a replacement for conventional liquid electrolytes. Herein, the preparation of a family of crosslinked network polymers as electrolytes via the ‘click‐chemistry’ technique involving thiol‐ene or thiol‐epoxy is reported. These network polymer electrolytes comprise bifunctional poly(ethylene glycol) as the lithium ion solvating polymer, pentaerythritol tetrakis (3‐mercaptopropionate) as the crosslinker and lithium bis(trifluoromethane)sulfonimide as the lithium salt. The crosslinked network polymer electrolytes obtained show low Tg, high ionic conductivity and a good lithium ion transference number (ca 0.56). In addition, the membrane demonstrated sterling mechanical robustness and high thermal stability. The advantages of the network polymer electrolytes in this study are their harmonious characteristics as solid electrolytes and the potential adaptability to improve performance by combining with inorganic fillers, ionic liquids or other materials. In addition, the simple formation of the network structures without high temperatures or light irradiation has enabled the practical large‐area fabrication and in situ fabrication on cathode electrodes. As a preliminary study, the prepared crosslinked network polymer materials were used as solid electrolytes in the elaboration of all‐solid‐state lithium metal battery prototypes with moderate charge–discharge profiles at different current densities leaving a good platform for further improvement. © 2018 Society of Chemical Industry  相似文献   

3.
Nanostructured block copolymer electrolytes (BCEs) based on poly(ethylene oxide) (PEO) are considered as promising candidates for solid‐state electrolytes in high energy density lithium metal batteries (LMBs). Because of their self‐assembly properties, they confer on electrolytes both high mechanical strength and sufficient ionic conductivity, which linear PEO cannot provide. Two types of PEO‐based BCEs are commonly known. There are the traditional ones, also called dual‐ion conducting BCEs, which are a mixture of block copolymer chains and lithium salts. In these systems, the cations and anions participate in the conduction, inducing a concentration polarization in the electrolyte, thus leading to poor performances of LMBs. The second family of BCEs are single‐lithium‐ion conducting BCEs (SIC‐BCEs), which consist of anions being covalently grafted to the polymer backbone, therefore involving conduction by lithium ions only. SIC‐BCEs have marked advantages over dual‐ion conducting BCEs due to a high lithium ion transference number, absence of anion concentration gradients as well as low rate of lithium dendrite growth. This review focuses on the recent developments in BCEs for applications in LMBs with particular emphasis on the physicochemical and electrochemical properties of these materials. © 2018 Society of Chemical Industry  相似文献   

4.
The surface layer and elemental composition of a lithium‐metal electrode before and after in contact with nanocomposite polymer electrolytes (NCPEs) comprising poly(ethylene oxide)/Ca3(PO4)2/LiX (X = N(CF3SO2)2, ClO4) were analyzed by X‐ray photoelectron spectroscopy. The presence of Li2CO3/LiOH in the outer layer of the native film was identified. The formation of LiF was detected on lithium surface when in contact with NCPE containing LiN(CF3SO2)2 and is attributed to the reaction between the native film and impurities. Li/NCPE/Li symmetric cells were assembled, and the thickness of the solid electrolyte interface as a function of time was analyzed at 60°C. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
In the present work, novel gel-based composite polymer electrolytes for lithium batteries were prepared by introducing a hierarchical mesoporous silica network to the poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)-based gel electrolytes. As compared with the PVDF-HFP-based gel electrolytes with/without conventional nano-sized silica fillers, the novel electrolytes have shown more homogeneous microstructure, higher ionic conductivity and better mechanical stability, which could be caused by the strong silica network and the effective interactions among the polymer, the liquid electrolytes and the silica. Moreover, the cell with this kind of electrolytes could achieve a discharge capacity as much as 150 mAh g−1 at room temperature (LiCoO2 as the cathode active material), with high Coulomb efficiency.  相似文献   

6.
Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based gel polymer electrolyte (GPE) is considered one of the promising candidate electrolytes in the polymer lithium ion battery (LIB) because of its free standing, shape versatility, security, flexibility, lightweight, reliability, and so on. However, the pristine PVDF-HFP GPE cannot still meet the requirement of large-scale LIBs and other electrochemical devices due to its relatively low ionic conductivity and deterioration of mechanical strength caused by the incorporation of organic liquid electrolyte into the polymer matrix as well as high cost. In order to overcome above deficiencies of PVDF-HFP based GPE, ultraviolet (UV)-curable semi-interpenetrating polymer network is designed and synthesized through UV-irradiation technique, and the as-prepared semi-interpenetrating matrix is constituted by pentaerythritol tetracrylate polymer network and PVDF-HFP. The ionic conductivity of the optimized GPE is as high as 5 × 10−4 S/cm and electrochemical window is up to 4.8 V at room temperature. Especially, the LIB prepared by GPE shows the high initial discharge specific capacity of 151 mAh/g at 0.5 C and good rate capability. Therefore, the semi-interpenetrating GPE based on PVDF-HFP exhibits a promising prospect for the application of rechargeable LIBs.  相似文献   

7.
Solid-state polymer-silicate nanocomposite electrolytes based on an amorphous polymer poly[(oxyethylene)8 methacrylate], POEM, and lithium montmorillonite clay were fabricated and characterized to investigate the feasibility of their use as ‘salt-free’ electrolytes in lithium polymer batteries. X-ray scattering and transmission electron microscopy studies indicate the formation of an intercalated morphology in the nanocomposites due to favorable interactions between the polymer matrix and the clay. The morphology of the nanocomposite is intricately linked to the amount of silicate in the system. At low clay contents, dynamic rheological testing verifies that silicate incorporation enhances the mechanical properties of POEM, while impedance spectroscopy shows an improvement in electrical properties. With clay content ≥15 wt.%, mechanical properties are further improved but the formation of an apparent superlattice structure correlates with a loss in the electrical properties of the nanocomposite. The use of suitably modified clays in nanocomposites with high clay contents eliminates this superstructure formation, yielding materials with enhanced performance.  相似文献   

8.
Novel blend-based gel polymer electrolyte (GPE) films of thermoplastic polyurethane (TPU) and poly(vinylidene fluoride) (PVdF) (denoted as TPU/PVdF) have been prepared by electrospinning. The electrospun thermoplastic polyurethane-co-poly (vinylidene fluoride) membranes were activated with a 1M solution of LiClO4 in EC/PC and showed a high ionic conductivity about 1.6 mS cm−1 at room temperature. The electrochemical stability is at 5.0 V versus Li+/Li, making them suitable for practical applications in lithium cells. Cycling tests of Li/GPE/LiFePO4 cells showed the suitability of the electrospun membranes made of TPU/PVdF (80/20, w/w) for applications in lithium rechargeable batteries. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
Novel single‐ion conducting polymer electrolytes based on electrospun poly(lithium 2‐acrylamido‐2‐methylpropanesulfonic acid) (PAMPSLi) membranes were prepared for lithium‐ion batteries. The preparation started with the synthesis of polymeric lithium salt PAMPSLi by free‐radical polymerization of 2‐acrylamido‐2‐methylpropanesulfonic acid, followed by ion‐exchange of H+ with Li+. Then, the electrospun PAMPSLi membranes were prepared by electrospinning technology, and the resultant PAMPSLi fiber‐based polymer electrolytes were fabricated by immersing the electrospun membranes into a plasticizer composed of ethylene carbonate and dimethyl carbonate. PAMPSLi exhibited high thermal stability and its decomposition did not occur until 304°C. The specific surface area of the electrospun PAMPSLi membranes was raised from 9.9 m2/g to 19.5 m2/g by varying the solvent composition of polymer solutions. The ionic conductivity of the resultant PAMPSLi fiber‐based polymer electrolytes at 20°C increased from 0.815 × 10?5 S/cm to 2.12 × 10?5 S/cm with the increase of the specific surface area. The polymer electrolytes exhibited good dimensional stability and electrochemical stability up to 4.4 V vs. Li+/Li. These results show that the PAMPSLi fiber‐based polymer electrolytes are promising materials for lithium‐ion batteries. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
The results of an investigation of a polymer electrolyte system based on the poly(trimethylene carbonate) host matrix, designated as p(TMC), with lithium tetrafluoroborate guest salt are described in this presentation. Electrolytes with lithium salt compositions with n between 3 and 80 (where n represents the number of (OCOCH2CH2CH2O) units per lithium ion) were prepared by co-dissolution of salt and polymer in anhydrous tetrahydrofuran. The homogeneous solutions obtained by this procedure were evaporated, within a preparative glovebox and under a dry argon atmosphere, to form thin films of electrolyte.The solvent-free electrolyte films produced were obtained as very flexible, transparent, completely amorphous films and were characterized by measurements of total ionic conductivity, cyclic voltammetry, differential scanning calorimetry and thermogravimetry.  相似文献   

11.
《Polymer Composites》2017,38(4):629-636
In this study, poly(vinylidene fluoride) (PVDF)/polyhedral oligomeric silsesquioxanes (POSS) nanofibrous membranes are prepared through electrospun process. Field emission scanning electron microscope images clearly show that PVDF/POSS membranes have interconnected multi fibrous layers with ultrafine porous structures. The average fiber diameter and crystallinity of PVDF/POSS membranes are lesser than that of pure PVDF membrane. Thermal stability and electrolyte uptake of blend membranes increase with increasing POSS content. Finally, PVDF/POSS membranes are soaked in a liquid electrolyte to form the polymer electrolytes and are assembled in coin cells to test their electrochemical properties such as ionic conductivity, interfacial characteristics, and electrochemical stability windows. The ionic conductivity improves with increasing POSS content and the highest ionic conductivity reaches 2.91 × 10−3 S/cm at room temperature. It is also worth mention that the composite polymer electrolytes show low interfacial resistance and high electrochemical stability window of 5.6 V (vs. Li+ /Li) with storage time. POLYM. COMPOS., 38:629–636, 2017. © 2015 Society of Plastics Engineers  相似文献   

12.
Poly(ethylene oxide)‐based composite gel polymer electrolytes (CGPE's) were prepared for various concentrations of magnesium aluminate (MgAl2O4) and LiTFSI as salt with a combination of 1,3‐dioxolane (DOL) and tetraethylene glycol dimethyl ether (TEGDME) as plasticizer by a simple solution casting technique. The addition of plasticizers has significantly improved the ionic conductivity of the gel electrolytes. The prepared CGPEs were subjected to scanning electron microscopy, thermal, and FT‐IR analysis. The electrochemical properties such as ionic conductivity, compatibility, and charge–discharge behavior have also been studied. Preliminary studies revealed that the prepared CGPE can be employed as a potential electrolyte for lithium–sulfur (Li–S) batteries. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44594.  相似文献   

13.
Fibrous membranes of poly(vinylidene fluoride)/poly(methyl methacrylate) (PVdF/PMMA) were fabricated by electrospinning method with different concentrations of polymer solution: 14, 16, and 18 wt %. The morphology of the electrospun membranes was observed by scanning electron microscopy. The images revealed that the nanofibers showed uniform diameter and no bead formation was observed with the concentration of 16 wt %. Also, the structure, crystallinity, ionic conduction, and electrochemical stability of the electrospun membranes were characterized. The results suggested that electrolyte uptake, ionic conduction, and electrochemical stability were improved by the addition of PMMA. Furthermore, with the 16 wt % concentration of the polymer solution, the membrane showed a high ionic conductivity of 3.5 mS cm?1 at room temperature and electrochemical stability of up to 5.1 V. We predicted that this new method may be very promising for preparing microporous PVdF/PMMA polymer electrolytes. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

14.
A new solvent‐free solid polymer electrolyte (SPE) films could be fabricated through bulk copolymerization process of amphiphilic urethane acrylate nonionomer (UAN). Amphiphilic UAN chain having polypropylene oxide‐based hydrophobic segment and polyethylene oxide‐based hydrophilic segment can not only dissolve lithium salt by complex formation with lithium cations but also be copolymerized with various monomers to form microphase‐separated polymeric matrix. Unlike conventional SPE systems showing higher conductivity with polar polymers and polar solvents, our SPE films prepared by copolymerization of UAN and hydrophobic monomers exhibited relatively higher conductivity. Dissolving lithium salts in UAN/hydrophobic monomer mixtures caused hydrophilic/hydrophobic microphase separation, which was more favorable for ionic conduction of lithium ions, resulting in the higher ionic conductivity than the SPE films fabricated using UAN/hydrophobic monomer mixture. This microphase‐separated structure of SPE films could be also confirmed by transmission electron microscope (TEM) images. Ionic conductivity of our SPE films could be also improved by dispersing clay minerals within SPE films. Three types of clay having different surface properties were used to fabricate clay/SPE nanocomposite films. Ionic conductivity of nanocomposite films depended on dispersibliity of clay nanoparticles with a SPE film, which was confirmed by measuring X‐ray diffraction and TEM. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
The hybrid plasticized polymer electrolyte composed of the blend of poly(vinyl chloride) (PVC) and poly(acrylonitrile) (PAN) as host polymer, propylene carbonate as plasticizer, and LiClO4 as a salt was studied. An attempt was made to optimize the polymer blend ratio. XRD, Fourier transform infrared, and DSC studies confirm the formation of polymer–salt complex and miscibility of the PVC and PAN. The electrical conductivity and temperature dependence of ionic conductivity of polymer films are also studied and reported here. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
In this study, solvent‐free nanofibrous electrolytes were fabricated through an electrospinning method. Polyethylene oxide (PEO), lithium perchlorate and ethylene carbonate were used as polymer matrix, salt and plasticizer respectively in the electrolyte structures. Keggin‐type hetero polyoxometalate (Cu‐POM@Ru‐rGO, Ni‐POM@Ru‐rGO and Co‐POM@Ru‐rGO (POM, polyoxometalate; rGO, reduced graphene oxide)) nanoparticles were synthesized and inserted into the PEO‐based nanofibrous electrolytes. TEM and SEM analyses were carried out for further evaluation of the synthesized filler structures and the electrospun nanofibre morphologies. The fractions of free ions and crystalline phases of the as‐spun electrolytes were estimated by obtaining Fourier transform infrared and XRD spectra, respectively. The results showed a significant improvement in the ionic conductivity of the nanofibrous electrolytes by increasing filler concentrations. The highest ionic conductivity of 0.28 mS cm?1 was obtained by the introduction of 0.49 wt% Co‐POM@Ru‐rGO into the electrospun electrolyte at ambient temperature. Compared with solution‐cast polymeric electrolytes, the electrospun electrolytes present superior ionic conductivity. Moreover, the cycle stability of the as‐spun electrolytes was clearly improved by the addition of fillers. Furthermore, the mechanical strength was enhanced with the insertion of 0.07 wt% fillers to the electrospun electrolytes. The results implied that the prepared nanofibres are good candidates as solvent‐free electrolytes for lithium ion batteries. © 2020 Society of Chemical Industry  相似文献   

17.
BACKGROUND: Much interest has recently been shown in improving the performance of lithium‐ion polymer batteries with gel polymer electrolytes (GPEs) due to a rapid expansion in industrial demand. Novel GPEs based on poly(vinylidene fluoride)‐graft‐poly(tert‐butyl acrylate) (PVDF‐gtBA) microporous mats are suggested in this study. RESULTS: Microfibrous polymer electrolytes were prepared using electrospinning and characterized for extent of grafting, morphology, crystallinity, electrochemical stability, ionic conductivity, interfacial resistance and cell cycleability. The degree of crystallinity was lower for tBA‐grafted PVDF mats than that of neat PVDF. The PVDF‐gtBA showed an improvement in the ionic conductivity, electrochemical stability, interfacial resistance and cyclic performance. CONCLUSION: The tBA‐grafted PVDF microporous electrolytes are promising candidates for enhancing the performance of lithium‐ion polymer batteries. Copyright © 2008 Society of Chemical Industry  相似文献   

18.
Organic/inorganic hybrid semi-interpenetrating network (semi-IPN) polymer electrolytes (HIPEs) based on poly(ethylene oxide-co-ethylene carbonate) (PEOEC) have been developed for all-solid-state lithium battery applications. In comparison to those of poly(ethylene oxide) (PEO), salient features of the PEOEC are the amorphous nature and high dielectric constant, which provide enhanced ionic conductivity. The organic/inorganic hybrid network matrix in the HIPEs is composed of different contents of photo-cross-linked octa-functional POSS acrylate (OA-POSS) and ethoxylated trimethylolpropane triacrylate (ETPTA). The effect of OA-POSS on solid-state electrolyte properties of the HIPEs is investigated in terms of the dimensional stability, thermal behavior, and ionic conductivity. Due to the presence of the rigid and bulky POSS moiety, the HIPEs exhibit improvement in ionic conductivity along with enhanced dimensional stability. The high capacity and good cycle performance of lithium batteries with the HIPEs demonstrate feasibility of applying the HIPEs to solid-state electrolytes for all-solid-state lithium batteries that can operate at elevated temperatures.  相似文献   

19.
A new lithium perfluoroakylsulfonate has been synthesized from a commercial perfluorovinylether fitted with a fluorosulfonyl group. By making use of the vinylether group, this species was incorporated into polyurethane networks based either on a poly(ethylene oxide)glycol or on a tri‐arm star‐poly(ethylene oxide)triol. The results, in terms of ionic conductivities, thermal behaviour and different domains of rigidity (solid‐state 1H NMR), are reported for these single cation conductor polymer electrolytes. When compared to the polymer electrolytes where the same but untethered lithium perfluoroakylsulfonate is dissolved in the same initial networks, a loss of conductivity is observed despite the higher mobility of the ionomers. This loss corresponds to the conductivity attributed to the anionic species. The higher mobility of the ionomeric electrolytes is to be related to the quasi absence of physical crosslinks. © 2000 Society of Chemical Industry  相似文献   

20.
A novel superabsorbent nanocomposite based on hydrolyzed collagen was synthesized by simultaneously graft copolymerization of 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPS) and acrylamide (AAm). Sodium montmorilonite (Na‐MMt) was used as clay. Methylenebisacrylamide (MBA) and ammonium persulfate (APS) were used as crosslinker and initiator, respectively. The effect of reaction variables such as nanoclay content, MBA and APS concentrations as well as the AMPS/AAm weight ratio on the water absorbency of nanocomposites was investigated. Although the water absorbency was decreased by increasing of MBA concentration, an optimum swelling capacity was achieved for clay, APS, and AMPS/AAm variables. The structure of nanocomposite was identified using FTIR spectroscopy, XRD patterns, and scanning electron microscopy graphs. The effect of swelling media comprising various dissolved salts and different pHs was studied. Also, water retention capacity was studied, and the results showed that inclusion of Na‐MMt nanoclay causes an increase in water retention under heating. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号