首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rheological behavior of microcellular, oil-extended ethylene–propylene–diene rubber (EPDM) compounds was studied in extrusions containing a blowing agent. The cell morphology development and rheological properties were studied for unfilled and conductive carbon black (Vulcan XC72, Cabot Corp., Ltd., Alpharetta, GA) filled compounds with variations of the blowing agent, extrusion temperature, and shear rate. The apparent shear stress, apparent viscosity, die swell (%), and total extrusion pressure of the Vulcan XC72 filled, oil-extended EPDM compounds were determined with a Monsanto processability tester (St. Louis, MO). The effects of the curing agent and blowing agent on the rheological properties of the compounds were also studied. A significant reduction in the stress and viscosity with the blowing agent was observed in the compound in the presence of the curing agent in comparison with those without the curing agent. The viscosity reduction factor was found to be dependent on the blowing agent loading, shear rate, and temperature. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
The foam extrusion characteristics of three different grades of polystyrene resin were investigated. For the study, cylindrical dies with various values of length-to-diameter ratio, entrance angle, and reservior-to-capillary diameter ratio were used. Fluorocarbon blowing agents were used, and mixtures of citric acid and sodium bicarbonate were used as nucleating agent. It was found that the die temperature, shear rate, the type and concentration of blowing agent, and die geometry affect the quality of the extruded polystyrene foam. Foam density and open cell fraction were used in determining the quality of extruded foams. We have found that the extrudate swell ratio is correlatable to foam density, independent of the die temperature employed. However, the die temperature has been found to be a very sensitive processing variable governing the quality of extruded foams.  相似文献   

3.
An experimental study of the rheological behavior of ethylene–octene copolymer vulcanizates in extrusion containing blowing agent has been carried out. The cell morphology development has been studied through a scanning electron microscope. Rheological properties of unfilled and precipitated silica‐filled systems with variations of blowing agent, extrusion temperature, and shear rate have been studied by using a Monsanto processibility tester (MPT). The total extrusion pressure (PT), apparent shear stress (τwa), apparent viscosity (ηa), and die swell (%) of the unfilled and silica‐filled compounds have been determined by using MPT. The effect of blowing agent (ADC) on the rheological properties of the vulcanizates has also been investigated. There is a reduction of stress and viscosity with blowing agent loading. It was observed that the incorporation of a blowing agent led to decreased shear thinning behavior resulting in an increase in power law index. The viscosity reduction factor (VRF) of unfilled vulcanizates is found to be dependent on the concentration of the blowing agent, shear rate, and temperature, whereas VRF of silica‐filled vulcanizates is found to be dependent on shear rate, temperature, and blowing agent concentration. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1132–1138, 2003  相似文献   

4.
An experimental study was carried out to investigate the flow behavior of gas-charged molten polymers in foam extrusion. For the study, a rectangular slit die with glass windows was constructed to permit visual observations, from the direction perpendicular to flow, of the dynamic behavior of gas bubbles when a gas-charged molten polymer flows between two parallel planes. Pictures were taken of gas bubbles in the flow channel with the aid of a camera attached to a microscope, and these were later used to determine the position at which gas bubbles start to grow. Using three melt pressure transducers mounted on the short side of the rectangular slot, pressure distributions were measured along the longitudinal centerline of the die. The polymeric materials used were high-density polyethylene and polystyrene, and the chemical blowing agents used were a proprietary hydrazide which generates nitrogen, and sodium bicarbonate which generates carbon dioxide. It was observed that the gas-charged molten polymer shows a curved pressure profile as the melt approaches the die exit, whereas the polymer without a blowing agent shows a linear pressure profile. The visual observations of the bubble growth in the flow channel, together with the pressure measurements, permitted us to determine the bubble inflation pressure, often referred to as the critical pressure for bubble inflation. It was found that the critical pressure decreases with increasing melt extrusion temperature, and increases with increasing blowing agent concentration. It was also found that the bulk viscosity of gas-charged molten polymers decreases with increasing blowing agent concentration and with increasing melt temperature. A general remark is made concerning the precaution one should take when an Instron rheometer is used for determining the bulk viscosity of gas-charged molten polymers.  相似文献   

5.
Abstract

An experimental study of the rheological behaviour of ethylene/octene copolymer compounds in extrusion containing blowing agent has been carried out. The cell morphology development was studied using scanning electron microscopy. Rheological properties of unfilled and precipitated CaCO3 filled systems with various blowing agents, extrusion temperatures, and shear rates were studied using a capillary rheometer. The total extrusion pressure, apparent shear stress, apparent viscosity, and die swell of the unfilled and CaCO3 filled compounds were also determined and the effect of blowing agent on the rheological properties of the compounds studied. It was observed that there is reduction of stress and viscosity with blowing agent loading. Incorporation of blowing agent led to decreased shear thinning behaviour resulting in an increase in the power law index. The viscosity reduction factor of the unfilled compound was found to be dependent on the concentration of blowing agent, the shear rate, and the temperature.  相似文献   

6.
A method is proposed to describe the processing history in extrusion dies and its influence on the state of the polymer after processing. The approach differs from conventional processing analysis, which uses the shear viscosity function to calculate pressure drop vs flow rate relations. The approach also differs from heuristic analysis which tries to find empirical correlations between rheological observations and processing behavior. The method is applied to the flow in annular extrusion dies. An integral constitutive equation is chosen to calculate the flow and to describe the flow history at the die exit as memorized. In the analysis, the kinematics are locally approximated by isothermal steady shear flow. The velocity and the velocity gradient are used to determine the Finger strain tensor, the path lines, and the residence times of the deforming material elements. Measures of the state of the polymer at the die exit are chosen to be the stress ratio N1/2τ12 and the free recovery. The free recovery calculations presume that the extrudate is chopped into small volumes of homogeneous flow history. The results of the calculations show the polymer very sensitively reacts to small changes of the die geometry. Important applications of this analysis are film blowing and blow molding, where the extensional behavior during the blowing process outside the die depends greatly on the preceding shaping process inside the die.  相似文献   

7.
In this work, a new methodology is developed that describes the viscoelastic scaling of a polymer‐physical foaming agent (PFA) solution in a detailed and internally consistent manner. The approach is new in that while previous researchers have largely focused on scaling down experimentally obtained high pressure polymer‐PFA solution viscosity data onto a master curve for the viscosity of the undiluted polymer melt at a reference temperature and atmospheric pressure, we have generated the shear viscosity data required for our simulations by systematically scaling up the viscosity values obtained from measurements on a pure polymer melt to the desired temperature, pressure, and concentration values characterizing the flow. Simulations have been run for the flow of a polymer‐PFA solution through an extrusion foaming die with an abrupt axisymmetric contraction and good qualitative agreement is obtained with experimental pressure drop measurements obtained previously in our laboratory. The pressure drop rates and temperature rise rates have been estimated at the surface of incipient nucleation. Because of the short residence times in the die for the microcellular foaming process, approximating the flow through the die as a single phase flow in our simulations still gives useful insights into the dynamics of the flow. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
In foam extrusion, process parameters, material properties, and the blowing agent have an influence on the resulting foam properties. For safety and environmental reasons, carbon dioxide (CO2) has gained importance as a physical blowing agent for the production of low-density polystyrene foam sheets. The sole use of CO2 often leads to corrugation, open cell structures, or surface defects on the foam sheet. As an alternative, blowing agent mixtures based on CO2 and organic solvents such as ethanol, acetone, or ethyl acetate can be used, changing solubility and flow behavior of the gas-loaded melt. Modeling of the foaming process in the extrusion die could help to reduce experimental effort and accelerate the development of novel blowing agent mixtures. A model approach to describe the melt behavior of polystyrene loaded with various blowing agent mixtures in the extrusion die is developed. Part I of the article describes the modeling of material properties, that is, rheological behavior by a Carreau-WLF approach with shift factors for temperature, pressure, and blowing agent effects on the glass transition temperature. Solubility behavior is modeled by a combined Henry solubility coefficient approach, showing good agreement with experimental data. Based on the material model, a process model is developed in Part II of this work.  相似文献   

9.
A bell-mouthed die geometry was designed to cause convergent flow at a constant, uniform, elongational strain rate. An equation was derived, which showed that steady-state elongational viscosity could be calculated from a plot of pressure drop due to elongation against a simple function of die length. To obtain values of pressure drop due to elongation, it was necessary to correct the total pressure drop measured across the bell-mouthed dies for the contribution from shear occurring near the die wall. For this purpose, a simplified shape for the bell-mouthed dies was assumed, comprising several parallel sided segments. Applying a formula to pressure drop data measured across straight dies corresponding to these segments gave an estimate of the pressure drop due to shear across the bell-mouthed dies. Pressure drops due to elongation were determined by subtracting the pressure drop due to shear from the total pressure drop measured across the bell-mouthed dies. Measurements were also carried out with lubrication to validate the shear correction method. The results indicate that for the compound used in this study, a combination of bell-mouthed and straightsided dies can be used in a conventional capillary rheometer to determine steady-state elongational viscosity. An elongational viscosity of 190 kPa s at 90°C and at a strain rate of 10 s−1 was determined for a simple styrene-butadiene rubber compound. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1139–1150, 1997  相似文献   

10.
Two dies for polymer co‐extrusion layer multiplication are evaluated experimentally and computationally in terms of pressure drop and layer uniformity. The first design is that of the original die, is compact, and has successfully been used to co‐extrude low elasticity polymers with closely matched rheological properties. The second die design, the one that is being modified, achieves a more balanced flow path with constant cross‐sectional area. Flow visualization experiments and computational simulations show matched performance between the dies when layering similar viscosity materials and better layering performance of rheologically dissimilar materials with the improved dies compared to the original die design. Furthermore, the improved die has a much lower pressure drop. This facilitates decreased energy consumption or the allowance of additional multiplier dies to be added resulting in an increased total number of layers. POLYM. ENG. SCI., 54:636–645, 2014. © 2013 Society of Plastics Engineers  相似文献   

11.
An in‐line capillary rheometer nozzle equipped to a conventional reciprocating 55‐ton injection molding machine was used to study the viscosity of single phase low density polyethylene (LDPE)/chemical blowing agent (CBA) solutions under high shear rate in the concentration range of 0 to 5 wt%. The steady shear viscosity of LDPE with endothermic and exothermic chemical blowing agents was measured for shear rates ranging from 170 to 200,000 s?1 and under pressure conditions up to 36 MPa. Pressure‐volume‐temperature (pvT) measurements were determined to account for the pressure effects and the changes of the free volume during processing. The viscosity reduction of the polymer‐CBA solution was found to be dependent on the concentration of the chemical blowing agent and melt pressure. A model based on a simplified Cross‐Carreau model, incorporating the pvT behavior of LDPE, and the free volume concept was proposed to estimate the viscosity reduction resulting from the addition of a chemical blowing agent. The model employs a scaling method based on concentration‐dependent and pressure‐dependent shift factors to collapse the viscosity measurement to a master curve at each temperature. POLYM. ENG. SCI., 45:1108–1118, 2005. © 2005 Society of Plastics Engineers  相似文献   

12.
从聚丙烯挤出发泡的加工设备包括挤出机的类型、发泡机头的设计、发泡剂的注入和计量控制以及聚丙烯挤出发泡的成型工艺包括螺杆转速、压力降和压力降速率、成核剂的分散、发泡机头的温度等系统介绍了聚丙烯挤出发泡中的一些关键技术。目前的研究表明:采用双螺杆挤出机进行挤出发泡时需要考虑发泡剂逃逸和压力的升高与稳定;可以通过改变机头的形状和尺寸获得不同的压力降和压力降速率,从而控制挤出发泡的成核速率。提高螺杆转速、增加压力降和压力降速率有利于优质发泡材料的获得;优选适宜的发泡机头温度可以抑制气体逃逸,提高发泡倍率,获得更低密度的聚丙烯发泡材料。  相似文献   

13.
The effect of die wall temperature on the flow of polymer melts in circular capillary dies was studied. At constant flow rates, it was found that die wall temperature had a greater effect on the pressure drop than melt temperature. A capillary die with two circular channels with different diameters was designed to simulate the profile extrusion. Changes of wall temperature varied the flow rate ratio between the two channels. An implicit finite difference method was used to simulate the velocity and temperature profiles inside the die. Values predicted by this model matched well with experimental data for both dies.  相似文献   

14.
The viscosities of mixtures of polystyrene and fluorocarbon blowing agent were determined, using the experimental technique described in Paper I of this series. For the study, three commercial grades of polystyrene were used, together with the following fluorocarbon blowing agents, trichlorofluoromethane (FC-11), dichlorodifluoromethane (FC-12), and blends of FC-11 and FC-12. For each combination of polystyrene and blowing agent, blowing agent concentration and melt temperature were varied. We have found that, for all three polystyrenes used, a single correlation exists between the viscosity reduction factor (VRF) and the blowing agent concentration, in which VRF is defined as the ratio of the viscosity of polystyrene-blowing agent mixture to that of polystyrene homopolymer. The correlation was found to be independent of shear rate and temperature, and dependent upon only the type of fluorocarbon blowing agent. It was suggested that such a correlation be used in predicting the bulk viscosity of mixtures of polystyrene and fluorocarbon blowing agent, using information on the viscosity of polystyrene alone.  相似文献   

15.
肖兵  邓小珍 《中国塑料》2015,29(12):77-81
基于Bird-Carreau黏度模型,运用有限元方法对三维等温微管挤出成型流动模型进行了数值分析,主要研究了管壁厚度对微管挤出成型过程中挤出胀大、速度分布、剪切速率和口模压降等重要指标的影响。结果表明,当熔体入口体积流率相等时,随着管壁厚度的增大,挤出物挤出胀大率和横截面尺寸变化量增大;口模出口端面上熔体的二次流动增强,但挤出速度和剪切速率减小;熔体在口模内的压力降明显下降;适当增加管壁厚度,有利于提高微管挤出质量。  相似文献   

16.
The melt flow properties of a low-density polyethylene were measured at test temperatures varying from 140 to 170°C and in a wide range of extrusion rates by means of a capillary rheometer, to identify the influence of extrusion conditions (such as temperature, shear rate, and die diameter) on the melt flow behavior in the present paper. The results showed that the entry pressure drop increased nonlinearly with an increase of the piston speeds, and it decreased with an addition of the die diameter. The melt shear flow obeyed roughly the power law and the melt shear viscosity decreased approximately linearly with an increase of the true shear rates in a bi-logarithmic coordinate system. The dependence of the melt shear viscosity on temperature accorded approximately the Arrhenius expression. Under these experimental conditions, the entrance pressure drop increases as an exponential function with an addition of the channel contraction ratio.  相似文献   

17.
A fundamental study of bubble morphology development and apparent rheological properties in foam extrusion is reported. The influence of melt temperature, die length/diameter ratio, and blowing agent level on the morphology are considered. Measurements of the influence of blowing agent on viscosity, extrudate swell, and end-pressure losses are described. The viscosity is reduced, but extrudate swell is increased. End-pressure losses were found to become very large relative to the die wall shear stress at low extrusion rates. These results were interpreted in terms of bubble development. The filling of molds by foaming melts was observed and is described.  相似文献   

18.
An experimental apparatus coupled with a rotating die system was especially designed and manufactured to study the rheological properties, flow patterns and swelling behavior of natural rubber (NR) compound for different shear rates and die rotating speeds at a test temperature of 110°C, the results being compared with those by the static capillary die. It was found that NR compound used exhibited psuedoplastic non‐Newtonian behavior. The rotation of the capillary die could reduce the extrusion load. The wall shear stress for any given shear rates increased with increasing die rotating speed. The fluctuation of the entrance pressure drop increased with increasing die rotating speed. The flow pattern development in the rotating‐die rheometer was different from that observed in the static die. The flow patterns in the rotating die were clearly unstable and contained two flow components which included axial flow along the barrel and circumferential flow at the die entrance. The size and shape of the axial and circumferential flows were more dependent on the piston displacement. It was found that the swelling ratio of the NR compound decreased with increasing die rotating speed. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers.  相似文献   

19.
In foam extrusion, process parameters, material properties, and the blowing agent have an influence on the resulting foam properties. For safety and environmental reasons, carbon dioxide (CO2) has gained importance as physical blowing agent for the production of low-density polystyrene foam sheets. The sole use of CO2 often leads to corrugation, open cell structures, or surface defects on the foam sheet. As an alternative, blowing agent mixtures based on CO2 and organic solvents such as ethanol, acetone, or ethyl acetate can be used, changing solubility and flow behavior of the gas-loaded melt. A model approach for describing foam extrusion of polystyrene with various blowing agent mixtures in an annular gap die is developed. Part I of the paper describes the modeling of material properties. In Part II, the process model including nucleation and cell formation in the flow field is developed and applied to a foam sheet extrusion process. Based on the material model, melt flow and formation of cells are modeled by a step-wise calculation along the die, showing good agreement with experimental data. Dimensionless numbers are used to describe the foaming process and a parameter study based on these dimensionless numbers is presented.  相似文献   

20.
In this article, shear rheology of solutions of different concentrations obtained by dissolution of cellulose in the ionic liquid (IL) solvent 1‐butyl‐3‐methylimidazolium chloride ([Bmim]Cl) was studied by measuring the complex viscosity and dynamic moduli at different temperatures. The obtained viscosity curves were compared with those of lyocell solutions and melt blowing grade polypropylene melts of different melt flow rates (MFR). Master curves were generated for complex viscosity and dynamic moduli by using Carreau and Cross viscosity models to fit experimental data. From the Arrhenius plots of the shift factors with respect to temperature, the activation energies for shear flow were determined. These varied between 18.99 and 24.09 kCal/mol, and were compared with values for lyocell solutions and different polymeric melts, such as polyolefins, polystyrene, and polycarbonate. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号